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PREFACE

This study considers the effects pf adding loss to a dielectrically-
lined circular waveguide siow—wavé structure. Two types—of loss are
considered: 1) losses exhibited by materials such as gréphite, which
can be‘modelled by a frequency-dependent complex scalar permittivity;
and, 2) losses exhibited by ferrite materials, which can be modelled
by a tensor permeability with frequency dependent complex entriés.

The appropriate waveguide dispersion relation is derived for
each case and solved numefically for the azimuthally symmetric modes.
This solution yields values for the attenuation.constant, o, and the
phase constant, B, for a wave propédgating in the lossy guide.

Results obtained b; solving the dispersion relations are applied
to the case of the cyclotron slow;wave amplifier. The two goals of
this study are to: 1) determine the amount of loss necessary to
prevent oscillations in the amplifier; and, 2) find the relative
effecté on the interaction in the amplifier of adding a thin lossy
layer to the slow wave structure in order to prevent charge build-up

on the dielectric liner.
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T INTRODUCTION

An increasing need for high power millimeter~wave devices has
encouraged much new interest in amplifiers employing the cyclotron
maser instability. Theoretical work done by Chu, Hirshfield, and
othevs (3], [4], [5] has demonstrated the potential value of the
gyrotron or "fast-wave' interaction in producing amplification at
unpracedented power levels. Experimental work done at the Naval
Research Labo%ato%ies in 1979 and 1980 has provided a considerable
amount of favorable evidence. Record power levels at millimeter-wave
frequencies have been attained by the NRL's gyrotron traveling-wave
amplifier {gyro~TWA}. An experimental gyro-TWA in 1980 produced an
output of 10 kW with 32 dB gain at 35,1 GHz and a 3 dB bandwidth of
1.4% [21.

The experiments at NRL discovered that unwanted oscillations
prevented the amplifier from operating in its o?timum regime. Some
oscillétians as large as 10 kW were reported just above the cutoff-
frequency of the empty waveguide civcuit. These were é&cribed to
reflections from the input/output couplers. The addition of loss has
been the usual means of suppression for such oscillations in a micro-
#éve-tubé amplifier. 1In his analysis of the effects of wall resistivity
en gyrotron gain, Lau [11] suggests that wall loss, added either in
the form of distributed or lumped loss, will reduce the chance of
oscillations due to reflections. Preliminary experimental evidence
from a-graphite-lined lossy-waveguide gyro~TWA has led Baird {2] to

suggest that such a lossy guide may be essential in obtaining stable

operation.




Although the high power output of the NRL gyro-TWA is encouraging,

its small (1.4%) bandwidth is somewhat disappointing. The gyro-TWA
is by the nature of its intevaction a narrow—-band device, and so
cannot be hoped to provide the large amount of bandwidth demanded by
today’s millimeter wave applications. Methods for making a wide-band
amplifier smploying the cyclstron maser iastability, however, have
been devised, Adding a slow-wave circuit to the gyro~TWA will allow
the Weibel or "slow-wave' interaction to be used. Analysis of this
interaction by Chu for a dielectrically-loaded waveguide slow-wave
structure [3] shows the potential For a very wide bandwidth. Pre-
liminary numerical results suggest baadwiéﬁhs as high as &0%.

Implementation of this wide-band cyelatron slow-wave amplifier
requires significaunt reduction of the oscillation problems discoversd
iz the NRL experiments with the gyro~TWA. Oscillation is even more
of & hazard in the cyclotron slow-wave amplifier since the prasence
of the dielectric lining complicates the coupling of the wave o and
from the waveguide. Oscillations can be suppressed by adding a layer
of lossy material, such as a ferrite or graphite, to %he ingide of
the dielectric liner. Analysis of this structure could determine the
correct amount of loss ko add to produce the reguired attenuation of
the reflected wave,

Although & very good analysis has been performed by Park [2] on
a4 lossless N-layer dielectrically~loaded waveguide, no attempt has
yet been made to analyze the lossy three-layer, dielectrically-loaded,

slow-wave structure suitable for use in the cyclotron slow-wave

amplifier. This study will present such an analysis, the importance




of which is compounded by the necessity of analyzing the effect of

a lossy layer applied to prevent deleterious accumulation of charges

ont the dielectrie liner.




II. SLOW-WAVE CYCLOTRON INTERACTION

lncreasing interest in millimeter wave applications has led to
renewed lnvestigations into electron devices employing cycidﬁron
interaction. The well kaown gyrotron and Weibel interactions oceur
when & rotating hollow beam of electrons is projected along an axial
magnetic field down 2 cireulay waveguide, The RF fields in the guide
act on the electrons causing them to bunch in the azimuthal direction
along each electron guiding center. This bunching results in a net
transfer of energy from the elactrons to the RF fields and the wave
propagating in the guide is amplified,

Chu and Hirshfield have shown [S! thar two bunching mechanisms
compete with each other, resulting in two separate regions of ampli-
fication. Fast-wave, or gyrotron, interaction results from azimuthal

bunching and dominates when:

SRS S {2.1)

Slow-wave, or Weibel, interaction results from axial bunching and

dominates when:

<1. L {2

Here @ is the radian frequency of the wave; €, the velocity of

light; k,, the axial propagation constant; {,, the non~relativistic
electron ecyclotron frequency; and Yo, the relativistic mags correction
factor pertaining to the electron beam. Figure 2-1 shows how a
typical gain plot would appear for a device employing cyclotron inter-—

action. Here gain is plotted against relative frquency, where we is

the cutoff frequency of the empty waveguide. The left curve resuirs
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Figure 2-1. Typical Gain vs Frequency Flot for a Device
Employing Cyclotron Interaction, Wy =
Waveguide Cutoff Frequency.
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from the gyrotron portion of the interactiom. In this region condition
{(2.1) holds, The right curve arises f:om the Weibel interactionm.

Heve condition (2.2) holds. 1In the normalized frequency range from

1.2 to 1.4 the two interactions cancel and a region of stability
results. This correspoads roughly te the point where the phase
valocity of the guided wave approaches the velocity of lighe.

The gyrotron region is characterized by relatively high gain
with narrow bandwidth., In direét contrast, the Weibel region demon-—
styates significantly lower gain but with considerably larger bandwidth.
It is this region which is of most interest for use in wide-band
millimeter wave devices. An amplifier working under condition (2.2)
is termed a slow-wave cyclotron amplifier.

Chu &ﬁ. al. [4] have derived the dispersion relation for cvclotron
interaction between a rotating electron beam and a wave propagatinog
doyn a circular waveguide in the TEp, wode. This equation, derived
from the linearized Vlasov equation and Maxwell's equations, gives a
relationship between wave frequency and complex propagation coefficient
(and thus gain), Although its exact form is not important to this
study, it does give the appropriate condition for synchronism between
the heam and the RF wave. For gain to result in the fast wave ragion
the wave frequency must obey:

w o oky vy v sQ. (2.3}
Here V, is the axial beam velocity; s, the cyclotron harmonic number;

and &, the relativistic cyclotron frequency given by:

= eBo (2.4)

Ymo




where Bo is the axial magnetic field, e is the electronic charge, and

mo is the eslectron rest mass. In the slow-wave region the synchronism

condition is:

WLk, vV, + 5., (2.5)
Figure 2-Z shows how synchronism between the s = | beam mode and the
TEgy mode in an empty waveguide would appear on an & ~ 8 diagram.
Since condition {2.1) holds and w >k, V, + {, the fast wave inter-
action will p;edamiﬁatee It can be seen that syachronism occurs
over only a very narrow freguency range, resulting in a device with
small bandwidth.

Synchronism can be achieved over a much broader band if the TEpg,
mode line is lowered to coincide wore with the s = 1 beam line. This
reduction in phase velocity is made possible by adding a slow-wave
structure to the waveguide. The simplest way of achieving a slow-
wave is to line the waveguide with a dielectrie. ' The waveguide then
becomes.a two-layer dielectric propagating structure whers the bean
hole is viewed as a dielectric with permittivity £o. For such a wave-
guide Chu has shown [3] that the synchronism condition between the
TEgy mode and the beam remains the same., Synchroniswm betwWeen the
g.w 1 beaw line and the TEp, dielectric waveguide mode is indicated
in Figure 2-3.

it is apparent that s device operating under the conditions
shown in Figure 2-3 can have 2 potentially large bandwidth, obeying
the slow-wave condition (2.2). The dielectric loaded waveguide
appears, then, to be a viable slow-wave structure for use in a

cyclotron slow-wave amplifier. Its design and operating properties

are counsidered in the next sechion.
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Figure 2-2. Synchronism Between the TEp, Empty Waveguide
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Filgure 2-3. Synchronism Between the TEg, Dielectric~Loaded
‘ Waveguide and s = 1 Beam Modes for Slow-Wave
Interacticu.




111 DESIGN AND BEHAVIOR OF THE DIELECTRIC LOADED
WAVEGUIDE SLOW-WAVE STRUCTURE

The nﬁmber of parameters which can be varied in analyzing the
two-layer dielectric slow-wave structure is very large. It w;uld prove
much too time-consuming to exawmine every possible combination of
waveguide dimensions, dielectric properties, ete. For this study it
is sufficient to decide on a certain waveguide design and determine
how varying_a few important parameters affects the nominal operation
of the slow-wave structure. The design case decided on should be
‘typical of slow-wave cyclotron applications. A good place to start
the design is to decide on the frequency band used. Curgent activity
in the millimeter region commonly resides in the 40 gigahertz area.
Thus, this study will consider an operating band from 36 to 46 GHz,
centered on 4} GHz. This assumes a reasonable 3 dB bandwidth of 10
Ghiz, or about 24% of the center frequency. ﬁ@xﬁ, the properties of
the dieleatric liner should be chosen. It is assumed that the liner
should have a high dlelectric constant and small loss tangent (so |
that the thickness of the dielectric and thus the power loss can be
Ckept to a minimum), The dielectric also must be vacuum compatible
so Chat no particles enter into the beam region and inte;fere with
interaction or focusing. The compound barium tetratitinateiiﬁa?iaﬁg}
is a dielectric that satisfies all of these requirements. It has a
fairly high dielectric constant of 38 and a loss tangent of approxi-
mately 6.5 x 1074,

Néw, the waveguide dimensions are to be chosen. The diameter of

the waveguide and the thickness of the dieleckric arve selected to

make the TEq; waveguide mode reside in the frequency band of interest.




¥

Here the m = l-mode is used, since it represents the fundamental
waveguide mode. It has the largest fields and lowest cutoff of any
azimuthally-symmetric mode. With the dimensions chosen, the beamline
is constructed to match the waveguide mode line over the desired
frequency range.

This nethod of choesing waveguide parameters and beam dimensions
1s actually only a rough First estimate., In the final design, the
most Important criterion is the resulting gain and gain flatness
across the band. A range of acceptable parameters should be tested
to produce the combination of gain and bandwidth desired. This
requites the use of some sort of small-signal analysis for interaction
between a gyrating electron beam and the TEqny waveguide wmode.

Use of a recently developed, gmail“signal computeyr program lesads
to the optimized wavegulde and beam parameters shown in Table 3-1.
Analysis of these parameters yields a very flat small signal gain of
2.8 dB/em over a2 3 d8 band of 36.% to 45.8 GHz. For an active circuit
length of 15 cm, this gives a very reasonable overall small signal
gain of 43 4B for the amplifier,

It is this set of parameters that determines the standard case
émplifiar_analyzed throughout this study. Figure 3-1 shows the

wavegulde structure.

The information in Table 3-1, equation (2.5), and the additional

relations:

52 e {(3.17




Table 3~1: Standard Case Parameters of the Cyclotron
Siow-Wave Amplifier,

Waveguide Inner Radius, b 0.390 ¢m
Dielectric Ynuner Radius, a 0.348 cm
Dielectric constant, €op 38,0
Dielectric Loss Tangent, O - 6.5 x 1074
Axial Magneric Field, Bo 10.3 &G
Beam Potential, V 19 k¥
Beam Current, 1 A 3.3 A
Gr%it Guding Center, Rg | 3.2076 cm
Larwor Radius, vy 0.0424 cm

Velocity Ratio, vi/v|| 2.6

Active Circult Length ‘ 15.0 om
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Figure 3-1. Dielectric-Loaded Waveguide Structure.




can be used to obtain the egquation {(non-relativisitic) for the beanm

line:

wb

¢ = 0.1235 kb + 2.272 5 . (3.2)

Here, & and k, are normalized using the guide wall inner radius and

the velocity of light. {(Dimensionally-normalized patameters are used
throughout this study to provide maximum flexibility of results.)

Thus, neither the axial propagation counstant nor the gulde inner radius
needs to be specified separately, but only their product, k,b. The
same applies to the freguency, speed of light, and guide inner radius.
Using this convenient system, the relative thickness of the dielsctric,
a/b, is the only waveguide dimension needed.

The dispersion equation relating w» and k, for the case of the
two~layer dielectric lined waveguide is derived in detail in appendices
one and twa, For the structure shown in Figure 3-1, equation (AZ.5)
can be written as:

2 2 2_ 2 b L LIS PR
O kgt kppt) ko) Ny By L Jnt(kppadibkgy Sy £y L In Gega)

2 3 o 2 2 - °{9 Ed 3 =
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£y = Jn  (kpma) ¥n  (kpyb)
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£ = JIn' (kpga) Yo (kpgb) = ¥n' (kppa) Jn (kppb)

f3 = Jo (kgpa) Yo' (kpob)

f

Yo (kppa) Jn' (kpsb)

f4 = In' {kggy) Yn' (kpob)

i

Yo' (kppa) Jn' (kpgb).




Here Jn (z) is-the nth order Bessel function of the first kind, with
argument z, and Yn (z) is the nth order Bessel function of the second
kind, with argument z. This equation describes the relationship
between & and k, for every mode which can exist in the waveguide.
Wheﬁ n =0 (azimuthally symmetric case), the left hand side becomes
zero and the right hand side splits into two sets of solutions, one _
for pure TE modes and one for pure TM modes. When n ¥ 0 the modes
are termed "hybrid" since the fields in the guide hafe both TE and TM
coﬁponents. |

The TEg] mode is the mode selected for RF interaction. Setting

n = 0 in (3.3) yields the TEp, dispersion relation:

kpp Mg f4 = Jo' (kpia) | ' (3.4)
kpZ Hy f3 Jo (kpla)

Hgfe the m refers to the m'th solution of (3.4).‘ This equation

can be solved numerically, on a computer, for various values of ks .
Solving for the first root gives a plot of the TEp; waveguide mode.
Letting ¥j = Uy = Mg, € = €y, €y = 38 €5, and a/b = 0.892, the curve
shown in Figure 3-2 is obtained. Also plotted in this figure is the
beam line from equation (3.2) for s = 1. It is seen from this figure

that ‘the wave and the beam should be nearly synchronized for fast—

" wb
wave interaction from about c = 2.30 to 2.35 and for slow—wave

: wh
interaction from approximately G = 2.5 to 4.0 and beyond.

The TEg) mode is the only desired mode of operation. Other
modes present in the waveguide can be detrimental to TEp; interaction.
Thus, it is important to know of all possible modes of propagation

which can exist in the operating band. Equation (3.3) can be solved
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on the computer for all combinations of m and n which result in
solutions near the TEpj; mode. (Full details of the method of.solutiOQ
are given in Appendix five.) TFigure 3-3 is a plot of many of these
modes. The n # 0 hybrid modes are termed "TE" or "TM" by how fhey

act near cutoff (i.e., as k,+0). It is seen from equétion (3.3)

that letting k, become zero also causes a splittiﬁg into pure TE and

™ modes.
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v, APPLICATION OF LOSS TO THE SLOW~WAVE CYCLOTRON AMPLIFIER

It is common practice in the design and production of microwave
tubes to add lossy sections at certain points along the length of an
amplifyingrdevice. At first glance this may seem sélf defeating
since amplifiers are usually designed for maximum gain or maximum
power output. However, certain problems camn arise in the operation
of the slow-wave cyclotron amplifier which deem the addition of loss
a necessary cure.

Two basic problems are considered here, either of which can be
of sufficiént severity to prevent the device from operating properly.
The first of these, charging of the dieiectric by the electrén beam,
is a problem encountered only in the dielectric lined waveguide type
of slow-wave structure. The second, parasitic oscillations due to
input/output reflections, is common to most all types of microwave
tube amplifiers. Each of these problems is discﬁssed in detail below.

A. Charging of the Dielectric Liner

The most efficient slow-wave interaction between a gyrating
electron beam and a traveling wave occurs when the guiding centers of
the electron orbits are located near peak radial magnetic fields.
fhis is where bunching is most enhénced. Later consideraéiohs of the
field distributions in the dielectric—lined waveguide (see equations
(A3.18) and Figures 6-14 through 6-16) determine that maximum radial
magnetic fieldlin a guide propagating the.fEOI mode occurs very

near the vacuum/dielectric interface. Thus, an efficient slow-wave

cyclotron amplifier will have a hollow electron stream passing very




near its dielectric liner. This close proximity of high electron
concentration results in a significant build up of charges on the
surfdce of the dielectric, |

ﬁigh charge concentration in the dielectric can have very
undesirable effects. Electric field fluctuations due to localized
surface charges may destabilize interaction by interfering with prbper
electron bunching. Worse, if these electric fields become too large,
dielectric breakdown might occur and the vresulting stresses could
shatter the fragile liner.

Charge buildup can be coﬁtrolled by adding a very thin
lossy layer to the inside of the dielectric liner. This ﬁrovides a
conductive path through which the charges can leak away before they
build to intolerable levels. Since the purpose of the layer in this
case 1s not to add 1dss to the circuit, it is desired to keep it as
thin as possible. Little is gained by having tﬁis lossy layer thicker

than a fraction of a skin depth,

B. Parasitic Oscillations

Parasitic oscillations will occur in the slow;wéve
cyclotron amplifier if the loop'gain of the circuit is greater thanm
unity, Figu;e 4-1 .shows a schematic representation of the loop gain
in a lossless circuit. A wave of amplitude "A" is 1aunched'at the
input port and propagates down the 1ength of the circuit. Interactiqn
with the electron beam causes amplification of the wave and it emerges
at the output port with an amplitude of G-A, where G is the gain of

the circuit. Since the output port is not perfectly matched to the
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circult it can be characterized by a reflection coefficient, Ro, and
a portion of the wave, Ro*G'A, is reflected back toward the input.
No gain occurs in the reverse direction and the wave arrives at thé
input port with the same amplitude Ro-G-A. Here it experiences a
second reflection and completes its loop of the circuit wiﬁh an
amplitude of Ry'Ro"G'A, Ry béing the input reflection coefficient.
The loop gain is therefore expressed as:

R;"Ro*G"A
Loop Gain = A = Ry°Ro°G . (4.1)

If this loop gain is'greater than one, the wave will continue to
propagate up and down the circuit, growing iarger énd larger until
the amplifier saturates. If the loop gain is less than one,the wave
will decay and there will be no oscillation. Thus, the condition for
stéble operation can be written as:

Ri'Ro’G <1 , ' (4.2)
Letting Ry and Ro take on reasonable values, 1.0 and 0.3 respectively,
the maximum stable gain is found to be Gpax = 3.33, or 5 dB. This

level is iwmsufficient to be considered useful amplification for most

-applications.

Figure 4-2 shows the same circuit modified to ‘represent
lossy wave propagation. Because the wave is attenuated in both
directions the loop gain can be written as:

Ry'Lp*Ro"G'Lp A
Loop Gain = A = Ly "Lp*R1*Ro G, (4.3)
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and fhe.conditipn for stable operation is:
LplgrRiRy 6 < 1. (4.4)
Written in terms of decibels, this becomes:
Lgp + Lg + R + Rg + G <0 dB, (4.5)
The loss Ly in equation (4.5) is the loss experienced by the wave
while traveling in the reverse direction. This is equal to the cold
circuit loss L. fhe loss Ly can be viewed as the amdunt by which the
lossless gain is reduced during interactiom of the wave and the elec-
tron beam (i.e. in the forward direction).. Lau, Chu, and Barnmett [11]
have shown that under fast wave conditions the lossless gain in dB is
reduced by approximately 1/3 the cold circuit loss in dB. Although
the vélidity of adapting these results to Ehe slow—wave region may be
questionable, it represents the best estimate available at this time.
Equation (4.5) then becomes:
Ry + Ry + 1.3L + G <0-dB. (4.6)
In section III the lossless gain for £he 15 cm long
cyclotron slow-wave amplifier was found to be 43 dB. Substituting
G =43 dB, Ry = 1.0, and Ro = 0.3 into (4.6) and allowing for a
loop gain margin of 12 dB yields:

0 - 10.5 a8 + 1.3L + 43 dB = -12 dB T (4.7)
which gives a cold circuit loss of L = =34 dB. The gain of the lossy
circuit becomes: Glogsy = G * 0.3L = 43 - 10 = 33 dB. Thué the
stable gain has been increased from 5 to 33 dB by adding 34 dB of
loss to the circuit.

Parasitic oscillations are usually assumed to result from

the fundamental interaction of the s = 1 beam line with the TEgp; wave-

guide mode, However, there are at least two other possible interaction




conditions which could give rise to oscillations. The firat is the
interaction of the s = 1 beam line with other waveguide modes im the’
vicinity of the TEg; mode. 1In Figure 3-3 many TE,] modes can be seeﬁ‘
to intersect with the s = 1 beam line. Also, many TM,1 modes approach
the beam line assymptotically for larger values of k,. Either of
these corditions can lead to alternate mode amplification, and thus
to oscillations. Adding loss to the circuit may not be sufficient to
end this problem, depending on how the loss affects these other modes,
The same amount of loss might not attenuate the TMp] mode, for example,
as effectively as it does the TEpj mode. Thus it may be much more
expedient to use a mode filter to remove all but the n = 0 (symmetrical)
modes,

The second condition results from the interaction of
higher harmonics of the beam line with higher order waveguide modes.
The s = 2 beam line is of primary concern since it intersects both
the TEgy and Mgy waveguide modes, as shown in Figure 4-3. Aé m
becomes largef (i.e. TEgs, TEg4, etc.) the RF fields near the dielectric
lessen and likelihood of interaction in these modes diminishes. Tt
should be remembered that mode filtration, selective against the hybrid
modes, would be ineffectual in removing any of these n = 0 modes.

An interesting idea for suppressing these higher order

_interactions is the use of frequency dependent loss, such as that

exhibited by ferrite materials. The loss distribution could be
ad justed so that maximum attenuation would occur at the frequency most

subject to interaction (probably near the s = 2/TEgg crossover.) At

lower frequencies where the fundamental interaction occurs, the loss
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would Be much less. Thus, unwanted interactiqns could be attenuated
without severe-degradation of fundamental gain.

When adding loss to the circuit to dispel charge build
up, it is desirable to apply a thin layer of lossy material evenly
distributed over the entire length of the amplifier. In contrast,
loss designed for 9uppressiné oscillations is usually applied in a
pattern over a smaller area. This allows the wave to begih its
interaction béfore a significant amount of attenuation takes place.
In addition, such localized loss prevents degradation of device
-efficiency which wquld occur‘if significant attenuation was present
near the output, The drawback to patterned loss is that it represents
a discontimnuity in the circuit, which might caﬁse reflections and
generation of spurious modes.

Discontinuities due. to patternmed loss can be minimized by
making the pattern as smooth as possible. Analysis has shown that
the smallest reflections occur for loss applied in the shape of a
gaussian distribution. However, the finite size of the slow-wave
cyclotron amplifier requirés that the loss ﬁéttern be.negligible at
the ends. This can be achieved 5y simulating the gaussian-by a
sin® (nz/8) function, where % is the length of the loss pattern.
Iﬁteger values of n on the order of 4 or 5 give good approximations
of a gaussian over much of 1. Figuré74-4 shows a loss dist?ibution,
patterned after the sin®* (7z/10) function. ﬁere it is assumed that
the loss.pattern will occupy the first 10 em of the circqit's 15 cm
active length. The peak value of the loss per umit length, A, can be
calculated by remembering that 34 dB of total loss is required to

give 33 dB of stable gain. Thus, the average loss/unit length times
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the length of the loss pattern should be 34 dB. The loss pattern

cofactor can be evaluated from:

34 dB
A= SRS z .
R[If sin (Eﬂ) dz]
' a
or
34 dB
A= (10 em) [3/8] = 9.07 dB/em. (4.8)

Therefore, a function for the loss pattern is given by:

E._']T) o
L (z) = 9.07 sin '(10 dB/em, (4.9)

This result will be employed in the following sections.
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V. SIMULATION OF THE LOSSY DIELECTRIC AND FERRITE~LINED
WAVEGUIDE SLOW-WAVE STRUCTURES .

The preceeding sections have provided ample motivation for
analyzing the dielectric-lined waveguide slow-wave structurelin the
presence of loss. First, it is desired to calculate the amount of
attenuation whiﬁh would result from a thin lossy charge suppression
layer. From fhis an optimum trade off befween low attenuation and
'high charge bleed-off can be deduced. It is also necessary to
determine if this layer will affect the real part (B) of the pro-
pagation constant to the extent that synchronism between thé beam and
the waveguide mode is reduced.

In addition, an investigation néeds to be made to determine the
proper thickness of a lossy layer used to_éuppress oscillations. It
is desirabl% to find éome sort of relationship between the lossy
nature of the material used, the layer's thickness, and the resulting
attenuation. This would allow the formulation of a scheme to apply
the amplifier loss pattern of Figuré 4-4 to the dielectric-lined
waveguide, The resulting effect of this liner on B is also an
impbrtant coﬁsideration. As above, it is hoped that thg waveguide
mode line and the electron beam line Yemain in-synchronism éfter the
loss is adﬁed.

Two groups of materials are candidates for use in the lossy
oséillation suppression layer. The first group includes graphite and
the graphite-like matérials such as aquadag, which are now in com@on
use. These materials are charactérized by a high conductivity and

can be modeled as an extremely lossy dielectric, The second group is

the ferrites. These materials provide a unique frequency dependent




loss ﬁhich can be used to produce localized attemuation. The
attenuation can be made to peak near the fundamental interaction, or
at the s = 2/TEgy intersection, or &t nearly any desired frequency.

It is assumed that the material used for the charge suppression
layer is graphite. Graphite's high conductivity provides a path for
the charges to quickly escape. This also allows for only_a very thin
layer to be used, perturbing the fields in thé guide as little as
possible.

Three different models of the lossy wavegﬁide are considered in
this study. Each is described briefly below .and then analyzed in
detail in Sections 6~8, Each of the analyses, and thus the results
obtained, were previously unknown to this author. Although the
results are applied to the cyclotrom slow-wave amplifier they are
useful in‘themselves, as they merely describe_thé.behavior of a wave
propagating in a lossy dielectric-lined waveguide.

A, Two~Layer Model

Here, a thin lossy graphite-like layer added to the
dielectric;lined waveguide is modeled using a two-layer approach,
The added layer is analvyzed aséuming the loss td be uniformly
distributed throughout the dielectric liner. This approach will
probably not give the most accurate representation of the structure,
but it does simplify a difficult problem. Its most useful application
lies in analyzing the lossy behavior inherent to the dielectric liner
itself.

B. Three-Layer Graphite Model

In this approach the thin lossy layer is viewed as a

discrete element. The material is assumed to be graphite which has
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been added to suppress either charge buildup or oscillations. This
is a more complicated version of the above two—layer model,

C. Three-Layer Ferrite Model

This case is much the same as the graphite three-layer
model except‘that the thin layer is represented as a ferrite.._This
case differs from the two preceeding in that it makes the added
assumption that a static magnetic field exists in the guide (as there

will be when used as a cyclotron slow-wave circuit).

29




VI. | | TWO-LAYER MODEL |
A, Formulation

A thin layer of lossy dielectric is added to the ipside
of the dielectric loaded waveguide shown in Figure 3-1. 1Its purpose
is to either suppress charge buildup in the dielectric or to suppress
the onset of oscillation due to mismatches on the circuit,. This
three—léyer waveguide will actually be analyzed, in this sectioh, as
if it were a two-layer structure, as shown in Figure 6-1. The loss
due to the thin layer is modeled as a loss uniformly distributed
throughout the dielectric layer.

The lossy dielectric layer is characterized by a complex
scalar permittivity: €5 = (€' - jE") £, It is assumed that the
real part of the dielectric constant, €', does mnot change with the
addition of loss. 'Thus, €' = 38 is used throughout the analysis.

The loss, then, appears only through the imaginary part of the dielec-—
tric comstant, €", This allows the calculation of attenuation as a
function of thé single parameter €", 1If €" is set equal to G€',

where § is the loss tangent of the dielectric layer, then this same
analysis can be used to model the loss intrinsic to the dielectric.

This would be a true two-layer analysis of a two—layer stiucture.

It should be remembered that equation (3.3) describes a
relationship between the wavé frequency, W, and the wave axial pro-
pagation conmstant, k,, for a structure equivalant to that shown in
Figure 6-1b. For the case being analyzed, it is assumed that U; =
Mg = Uy, €] = €,, and €5 = (38 - je") e, Since €9 is represented as
a complex permittivity, equation (3;3) becomes a function of a com-

plex variable, and thus its solution is necessarily complex. Using
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the methods in.appendix five, this dispersiop equation is solved for
complex k, at various'real values of frequency. Letting k, =.B - ja
the waﬁe will vary as:
VelWt ~ i kpz = ojut o—j(B-jM)z = gjut o=iBz o -viz, (6.1)
" Thus, B describes the phase and O describes the éftenuation of the
wave per unit length, respectively.

A complete solution of (3.3) can be achiéved entirely in
terns of dimensionally normalized parameters. Values of db and 8b
are computed from %E' and a/b, where a and b are the wa&eguide radii

~ shown in Figure 6-~1 and C is the speed of light. A modified version

s,
o

of the dispersion equation can be written in normalized units as:

a
2 2 2 _ 2 ‘)'

wb\ 2 a\ 2 a
€/ g e (‘E (kpb)?  (kyob)* \ kb Wyp £, Jn (k b F)
IR “1R el 02 p2P Wig 3 p1b.

g
kp1b €9g £ Ju' (kplb b/
' (6.2)
kbzb €1r f1 In kplb‘b
My Mo

. where: UlR = uo HZR = Uo

IR = &  Ep= &'~ je"




. a ' a
£1 = Jn (kpgb b) ¥n (kpgb) - ¥n (kpsb b) In (kpy b)
a : a
f2 = In' (kpgb B) Yn (kpyb) - ¥n' (kpgb B) Jn (kpgb)
a 2
£3 = Jn (kpzb b) ¥n' (kpgb) = Yn (kpyb B) Jn' (kpyb)

f4, = Jn' (kpob %ﬁ Yo' (kpsb) - ¥n! (kpzb‘%) Jn' (kpgb).
Equation (6.2) and ﬁhe three-layer dispersion equation (Al.29) are
valid in the presence of-loss for gil modes. However, because of
their immediate importance and their intrinsic simplicity, only the
azimuthally symmetric (n = 0) modes are considered in this study.
The solution of (6.2) assumes the normalized values:
Wip = Hog =1, €1p =1, €9 = 38 - j E", and a/b = 0.892,

B. Solution for the TEp; Mode

The TEg) mode is the most impdrtant mode to be analyzed
since it is the one involved in thé fundamental interaction. Solving
for o will determine the necessary amount of loss to prevent oscillations
in the amplifier. It will also describe the effect of the charge
suppression layer. Solving for B will determine whether synchronism
between the beam and the wavé has been affected by the additiog of
loss.

Letting o = 0 in equation (6.2) andréolving for éhe first
toot results in the TEg; W-B plot shown in Figure 6-2. This graph
describes how the mode line changes with various values of g".

Because k, is involved in equation (6.2) ohly as kzz, all of the w - B

plots are symmetrical about the w axis. Figure 6-3 is a continuation
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of Figure 6—2,.down to w= 0. As €" increases, the w -8 line shifts to

the_righf, and synchronism with the beam line is reduced. If the

shift in B corresponding to the value of o desired is relatively

large, the interaction, and thus the gain, will decrease. This would

necessitate a re-evaluation of the small signal gain of the circuit.

The desired value of loop gain could then be calculated by finding

the proper combination of gain decrease due to B shift (reduced inter—

action) and gain decrease due to attenuation. It is hoped that the

value of €" which produces sufficient attenuation to suppress oscil-

lations creates a shift in B that is small enough to be ignored.
Perhaps the best way to see how B changes with the addition.

w

of loss is to examine the wave's phase velocity: Vp = B. Figure 6-4

wh
is a graph of Vp/C = (g )/ (Bb) versus £", where ¢" is plotted on a

log scale to give a full range of values. Three frequencies are
wh wh
shown: the band edges T = 2.95 and ¢ = 3.75, and the center frequency

%h'= 3.35. This plot vividly displays the information desired.. Up
_to about " = 5.0, the phase velocity of the wave at all- frequencies
departs very little from the lossless case. At this point Vp begins
a2 sharp decrease with additional loss and all three values approach a
common assymptotic value of vp = 0. Thus, €' = 5.0 can be considered
as an indicator point, below which any shift in 8 will be comsidered

small enough to be ignored (in the frequency band of interest).
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The attenuation resulting from the lossy dielectric is
shown in Figures 6-5, 6-6, and 6-7. Here gb has been plotted against

relative frequency for values of &" ranging from 0.25 to 40.0,, The

: wh .
arrows shown in the plots correspond to ¢~ = 2.37, which is the cutoff

frequency of the lossless waveguide. It is evident from these graphs
that as £€" approaches zero (i.e. the lossless case), the attenuation
quickly increases at frequeﬁcies approaching lossless cutoff. This
indicates that while a wave will not propagate below cutoff in the
lossless case (since B = 0), propagation is possible below this
frequency in the lossy case. The penalty is that the attenuation
will be much more severe -in this region. |

The phase constant, f, also exhibits interesting behavior
near the lossless cutoff. As mentioned before, B is zero below cutoff
in the lossless case. In the lossy case, B appréaches zero but does
not quite reach it until the point w = 0. This was seen in Figure
6-3. It can also be seen in Figure 6-3 that as €" > 0, the w=~ B

line moves much closer to the B = 0 axis. The same effect is displayed

" more vividly in Figure 6-8. Here, phase velocity has been plotted

against frequency for various values of £". As €" becomes smaller,
the pﬁase velocity at a given frequency below lossless cutofg becomes
much larger, approaching the losslesg case of v, ==, This effect is
agein shown in Figure 6-9 where phase velocity is plotted vs €' at
the lossless cutoff frequency. Here phase velocity is seen to get

very large as €" > 0, It is a reasonable conclusion from the behavior

of both & and B that as " goes to zero, a true lossless cutoff is

approached.
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A useful representation of attenuation results is shown

in Figure 6-10. Here ob has been plotted vs &£" for the center

wh g
frequency, ¢ = 3.35, on a log-log scale. For values of €' below

about 20.0, ab is found to be related to €" in a linear fashion. A
regression analysis on these results indicates that the first order

term is by far the most important, and thus the relationship can be

written as:

IiH

_wh '
ab (") Ky (&) e". (6.3)
There is no constant term since €' = 0 results in zero attenuation.
It is found that, at the other frequency in the operating band, ¢b

and €" have nearly the same linear relationmship. At the three most

important frequencies, Kyop, is found to be:

KoL (2.95) = 3.23,
Koop, (3.35) = 2.85,
Koop, (3.75) = 2.58.

Equation (6.3) provides a very simple means by which " can be
calculated for any value of attenuation desired.
Figures 6-11 and 6-12 examine further the manner in which

o varies with frequency and ¢". Each is a plot of:

o ((JJ) - O (U.)o)
Ao (w = o (Wg)

which describes the relative change in o from that at a given frequency.
It is important to know how o differs from frequency to frequency

since a loop gain margin of 0 dB (as shown in equation (4.7)) should

not be exceeded at any frequency. Figure 6-11 shows this parameter vs
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. b
o
frequency for values of €" and "¢~ = 3.35, the center frequency.

This curve is actually an amplification of Figures 6-7 to 6-9 showing

how @b varies with frequency over a narrvower range. The linear

. Wb
relationship between ob and § 1is clearly evident. Figure 6-12

describes how Ao(w) varies with £" at various frequencies. As before,

{.L\O b

¢ is taken as 3.35. It is apparent that below about " = 2, Aa (w)
is fairly constant. This means that the relative slopes of the &b vs

whb

¢ curve are about the same for all smallex values of g".

The foregoing information about ab can be used to obtain
the value of £" required to suppress oscillations resulting from the
fuﬁdamental interaction. It was calculated in Section IV that the
peak value of the waveguide loss pattern should be 9.07 dB/em (at mid-
band ). This corresponds to an Ob of: 0b = (9,07 dB/cm) (0.39 cm)
(0.1151 NP/dB) = 0.407. As shown in Figure 6-10 or equation (6.3),
an attenuation of ob = 0.407 occurs when €' = 1.15. In other words,
9.07 dB/cm of attenuation will be ekperienced by a TEp; wave pro-
pagating in a two-layer waveguide with €9 = (38 -j 1.15) £o. Returning
to Figurg-6¥4, it is found that €" = 1,15 falls below the 5.0 indicator
point. This ig an important observation, leading to the conclusion
that the addition of sufficient loss to prevent oscillations due to
the fundamental interaction will not adversely affect the synchronism

of the beam and the TEg)y mode. Thus, no parameter modification in

the initial small signal analysis is necessary.
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The frequency response of the gain of the amplifier with
the lossy dielectric can be found knowing the lossless theoretical
gain and how the loss varies with frequency. Remembering that the
lossless theoretical gain was found to be a relatively flat 43 dB
across the band, and that thig gain is reduced by about ome-third of

the added loss, the lossy gain can be written 4as:

Gloggy = 43 dB + 0.3 L (w) - (6.4)
o b{w)

where: L (W) ==-3.26"1 2

Letting: & = 10 em, b = 0.3%9 cm, €" = 1,15 and using Figures 6-6 and

6-11, a plot of Glossy Vs frequeﬁcy is obtained. This is shown in

Figure 6-13. The lossy gain is seen to vafy from abbut 34 dB at the
low frequency end to 31.5 dB at the high eﬁd of the band. The merit
of setting the loop gain margin in equatién (4.7j to a sufficiently

large value is evident. While the gain at midband may be low emough

wh '
to prevent oscillations, the gain at g = 2.95 may be too high. 1In
- wb .
this case the loop gain at g = 2.95 is:

Loop Gain = -10.5 + 43 + 1.3 (~30.1) = -6.6 dB < 0.
So, in the reference application, there are no oscillations to be
expected from the fundamental interaction.

C. Two-Layer Field Patterns

It has been mentioned that in order to get strong
interaction, it is necessary to put the electron beam in the vicinity

of highest-strength RF magnetic field. It is advantageous, then, to

4t




obtain a perspective concerning the distributions of the Qaveguide'
fields and how they are affected by the additiom of loss.

Equations for the values of the TEp fields:in each of
the two regions have been derived in appendix three. Equations
(A3.18) and (A3.19) give values for the fields which have been

normalized to make H, = 1 on the axis (p = 0). These equations are

Wb
evaluated by choosing a value of C » solving the TEg; dispersion

equation for k,b, and substituting theése values into (A3.18) and
(A3.19).

Figures 6-14, 6-15, and 6-16 are piéts of these normalized

_ )
field components for the lossless waveguide at frequencies of T =

2.95, 3.35, and 3.75 respectively. The arrows indicate the vacuum/
dielectric interface. The peak value of the relative field strength

is seen to be a strong function of frequency, varying by more than

- wb wb
two orders of magnitude between ¢ = 2.95 and § = 3.75. For all

frequencies, the radial magnetic field component, Hp, and the azimuthal
electric field component, E¢, peak near the boundary of the dielectric

and the vacuum. In contrast, the longitudinal magnetic field component,
H,, peaks at the outer waveguide wall, as well as near the dielectric
boundary. The behavior of Hy justifies the use of a hollow electron

beam placed as near the dielectric liner as possible. This puts a

maximum amount of the gyrating electrons in the vicinity of peak

radialvmagnetic field,
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Oné worry, discussed earlier, is that the addition of
loss would cause a shift in B which would reduce the fundamental
interaction. In a similar vein, it is important to comsider how the
addition of loss affects the radial magnetic field. If Hp is reduced
or redistributed the electron bunching might 5e diminished and inter-
action decreased. Figures 6-17, 6~18, and 6-19 show the normalized
field components for values of €" of 0.5, 1.15, and 5.0 respectively,

wh
where ¢~ = 3.35. Ffigure 6-18 reveals that for " = 1.15 the real

part of Hp has decreased slightly, wﬁile a small imaginary part has
been created. The overall magnitude of Hp is about the same, but

its phase has changed. WNote also that Hp and H, still have about 2
90° phase difference while Hy and Hy are out of phase by around 180°L
Thus, it appears that, at least for €" = 1.15, there is no significant
decrease in the value of Hp.  In addition, no re&istributiOn of field
peaks is apparent and thus beam localization near the dielectric

liner remains walid.

D. Solution for the TMg; Mode

The TMgj mode should be of little concern regarding
qnwanted interactions. Figure 3-3 suggests that its modé line is too
far from the beam line to allow synchronism to take place. .Neverthe—
less, it is important to analyze how loss affects the TMp] mode. There
are two reasons for this, First, the potential exists for using the
TMp) mode for interaction in a slow-wave amplifier. If such a project
is undertaken, it is good to have some preliminary analysis of the be-

havior of the lossy waveguide. Second, it is useful to have the TMg]

mode as a comparison to the results obtained for the TEp; mode.
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The dispersion relation for the TMp mode is qﬁtained by
substituting n = 0 into equation (6.2) and taking the second multiply—
ing term; Solving for the first root yields complex values of the
axial propagation coefficient k,b = Bb - job. As with the TéOl
case, it is assumed that iy = UéR =1, g1g = 1, Ez# = 38 - j&€", and
a/b = 0,892,

Figure 6-20 shows the ™y w -8 diagram for four different
values of €". It is seen that as £" is increased the w-B curve
moves to the right, exhibiting the same effect observed with the TEyj
mode. This shift seems to be larger in the TMOi cagse, however,

yielding a change in PBb from the lossless case of about 5.1, against

2.1 for the TEp; case (for " = 40 and %2'= 2.5). Whereas this
shift was undesirable when considering fundamental interaction, here
it is a benefif. The addition of loss increases the distance between
the T™g{ wode line and the beam line and thus léssens the chance for
unwanted interactions.

The shift in Bb with changing €" is more dramatically
illustrated in Figure 6-21, whefe the wave's phase velocity is plotted
against the log of €Y, This graph appears very similar ‘to the one
obtained from the TE(; case (Figure 6-4) except at the frequency

wb :
¢ = 2.3. Here an interesting "bump' is seen for £" around 4 or 5.

At the other frequencies the phase velocity decreases with increasing

Wh
e" and the w-8 curve shifts to the right. At g = 2.3 the phase

velocity first increases with increasing €", pesks out at ¢" = 5.0,




3.5

S=1
BEAM LINE

/

3.0

Kol —
3© 2.5
2.0 ~—
1.5 ] | |
] 5.0 10.0 15.0 20,0
Bb
Figure 6-20., Two-Layer ™™g @ - 8 Plot for Various Values
of gV, i .
1.0 t ' ] ‘ . ll
0.8} -“"élzz.s
0.6 | _
\ wb _
g0 ¢ = 2.5
0.4 [
%? = 3.0
0.2 p= wb
, T =35
0.0 | 1 L _
0.01 0.10 " 1.0 10.0 100.0

E"

- Figure 6-21. T™Mp) Phase Velocity vs eV for Various Values
of Frequency.

54




then decreases in much the same manner as the other Cvaes. This
corresponds to that point on the w-8 diagram shifting left, stopping,

then shifting to the right. 1In other words, the €" = 5, Ty mode

: , wb
line will cross the €" = 0 line in the vicinity of T = 2.3,

Interestingly, the lossless Tg); mode line has a peculiarity of

whb
its own in the vicinity of ©c =2.3. As 8 is decreased, the ™g1

mode is apparently heading for cutoff in rhe same manner as the TEg;

mode . However, at a point near %E'=-2.3 (Bb = 3.0) the curve makes

an abrupt little dip and affects cutoff at:a lower frequency. This
behavior is not seen in the TEp) mode line, and thus certain differences
in this region are not entirely surprisiné;

The attenuation of the T™g1 wave resulting from the lossy
nature of the waveguide is plotted in Figures 6~22 and 6-23, The
curves in Figure 6-23, for €" = 10, 20, and 40, are somewhat similar
to thoée féund for the TEp; mode (shown in Figure 6-7), In both
cases thé attenuation decreases with decreasing frequency until a
point near the lossless cutoff (indicated by an arrow) is reacﬁed.
Below this frequency the attenuation increases with decreasing
frequency. With the exception indicated below, the only ﬁajbr dif-
ference between the two modes is that the curvature of the attenuation
plots appears to be concave down in the TEp; mode and concave up

in the T™p; mode in the region above lossless cutof f,
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The curves shown in Figure 6-22 show striking differences
to those in Figure 6-6. 1In the TEj; case there is no change in the
basic shape of the curve as &£'" is reduced. However, as ¢" is changed:

from 10.0 to 5.0 there is a drastic change in the TMg] curve. Figure

wb
6-22 shows a huge dip for the £" = 5.0 curve at about G~ = 2.3. When

e = 1.15 the dip is smaller but still noticeable. This drop in
attenuation is apparently connected to the interesting beha?ior of Bb
described previously. When £" = 1,15, the bump in Figure 6-21 is
just beginhingrto develop, and the dip in Figure 6-22 is fairly small.
At €" = 5.0 the bump is at its peak and the dip in attenuation is
very large., At €" = 10,0 the bump in the phase velocity curve has
disappeared, and so has the dip in attenuation. |

For higher values of frequency the "bump-and-dip" behavior
is not present, and the TMyj attenuation acts much the same as in the

TECl case. Figure 6-24 is a log-log plot of attemumation vs £" for

C = 3.4. The linear nature of this curve is very much like that
shown in Figure 6-18 for the TEp) mode. In both cases £he curves
have a slope of one until about €" = 10,

As stated before, when the beam is synchrbniged with the
TEOl'mode, the chances of interaction between the beam and Lhe TMg1
mode are fairly small, Oscillation due to this interaction should
be even less likely when loss in the form of €" = 1.15 is added and

the T™p; mode is attenuated. Such should be the case at all frequencies
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except, possibly, near the troublesome %"’= 2.3. This frequency is
characterized by three important differenmces. First, Figure 6-20

shows that this is the point at which the TMgp1 mode line passes

closest to the beam line. Second, Figure 6—21 indicates that when a
loss of €" = 1,15 is added to the Qaveguide the ™[] mode line actually

moves a bit closer to the beam line. Third, Figure 6-22 shows that

Wh ‘ :
the attenuation at g~ = 2.3 is only about half of its value at higher
freqﬁencies.

Wb
Oscillation at T~ = 2.3 would tepresent a much more

worrisome problem if the TMp; mode were ever used for fundament al

interaction. This is due mainly to the dip in the attenuation curve.

Wb
Aun amount of loss sufficient to prevent oscillatioms at c = 2.5

: wh
would probably be only a third of that necessary at g = 2.3. Thus,

if the right amount of loss were added .to suppress oscillations at

Wh
¢ = 2.3, the higher frequencies would be subjected to an attenuation

about three times larger than necessary, This would prove detrimental
to the lossy gain of the amplifier.

E. Solution for the TEgg and M2 Modes

The TEgy and Mgy modes must be considered potential

sources of oscillation since they both intersect the s = 2 beamline.

If a mode filter is used to remove all but the azimuthally symmetric




modeé, the TEoé and TMOz'modes will remzin as the most botheérsome.
They are considered together here because, unlike the TEgp and TMp,
modes, their attenuation characteristics are very similar.

The TEj, and TMOé modes are calculated by substituting
n = 0 into equation (6.2) and solving for the second set of roots.
Figures 6-25 and 6-26 show the resulting w - B curves for the TEg?
and ™g9 modes. Also plotted in these figures is theﬁs = 2 beam
line, which is found by substituting s = 2linto equation (3.27,
Figure 6-25 shows that the shift in Bb for the TEgs case is much less
and very different thanm that in the TEgpy case. In fact, for " = 40,
the shift ié to the right at lower frequencies and to the left at
higher frequencies, resulting in a croésiﬁg of the lossless line.
Differiﬁg behavior is also exhibited in Figure 6-26 for the ™g9

mode. The shifts are much smaller tham in the ™1 case, and the

. ‘ wh |
€" = 20 and €" = 40 lines are seen to cross at about ¢ = 2,7. An

interesting result of the reduced shift in 8 is that the intersection
point of the TEgy or Ty mode line and the s = 2 beam line should
remain fairly constant over a wide range of £",

The phase velocity of the TEp9 aﬁd ™My modes is plotted

against ¢" in Figures 6-27 and 6-28, Figure 6-28 reveals that the

vV
TMg2 phase velocity exhibits decreasing EE'with increasing €", as

seen before. Figure 6-27 is more interesting: at g = 4.8 the phase

velocity of the TEgy wave decreases with increasing £" while at
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wh

¢ = 6.0 it increases slightly. This results in the crossover effect
seen in Figure 6-25.

Figures 6-29 and 6-30 show the attenuation resultiﬁg
from various values of £" for the TEp and ™oy mwodes. The basic
shape of these curves is much the same ‘as that of the TMyj mode with
higher €" -- slow decreasing attenuation with decreasing frequency
until a point near lossless cutoff is reached, then increasing répidly.
A more important observation is that the TEpg and TMOé waves are
attenuated.much less, by nearly two orders of magnitude, than are
their TEp); and TMpq counterpérts. The exception is near lossless
cutoff (shown by the arrow) where the atternuation is nearly as great.

An interesting characteristic of both figures 6-29 and

6-30 is that the €" = 40 curve intersects other curves. This is not
. wh : ' .
intuitively expected. For example, at ¢ = 6.0 the TEgs wave will
experience more attenuation with & = 20 than with €" = 40 (@b =

0.115 as opposed to @b = 0.100). This also means that certain values
of attenuation can be obtained from more than one value bf e,
Figures 6-31 and 6-32 show this more clearly, plotting attenuation
égainst e". 1In both figures the usual linear relatioﬁshiﬁ be tween &"
and Ob is seen to hold up to about €" = 5,0, However, at this point

the curves begin to flatten out and, for certain frequencies, bend

ob
back down. For the TEgy mode at G = 6.0, a value of ab = 0.10 can

be obtained at either £ = 11.5 or at €" = 39,
A qualitative understanding of why the higher order modes

are attenuated less than the TEp] and TMy] modes can be gained by
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comparing the éistributions of their waveguide fields. 1In Figuré 6~14
the TEp) electric field was seen to peak imside the dielectric region.
In Figuré 6-33 the electric field is largest at p/b = 0.4, inside the
vacuum regiOn,.and is much smaller in the dielectric. Thus, since

the loss is added to a region of high field strength, the TEg] mode is
greatly attenuated. Likewise, since the loss is added to a region of
relatively low'TEOQ field strength, the TEgy mode is attenuated much

less.,

For the selected case of ¢" = 1.15, the TEp; wmode

: wb
experiences ‘an attenuation of about Ob = 0.016 at ¢ = 4.8 (the TEgo/

s = 2 intersection). This corresponds to a TEpg loss of 1.34 dB

. . wWh .
over the 10 cm length of the amplifier. At g = 5.1 (TMga/s = 2

intersection) the TMyp mode experiences b = 0.01 or about (.84 dB of
loss over the length of the amplifier. How effective tﬁis amout of
loss is in suppressing oscillations depends on how much interaction
occurs between the beam and tﬁese higher order modes. It is a
fortunate consequence‘that positioning the eiectrop beam to maximize
TEgy interaction reduces TEpy interaction. The hollow beam is-placed
as close to the dielectric as possible, so that the electroms will
experience the maximum level of the TEqgy field strength. However,
Figure 6—33.shows that this is a region of small TEgy field strength
and so the TEgpy interaction is correspondingly smaller.

Atlhough there is only about a 30% reflection at the

wb
cutput at midband (™ = 3.35), the match at higher frequencies (e.g.
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Wb

¢ = 4.8) can be much worse. Such a situation would increase the
chances of higher mode oscillation. To accurately determine if the
loss experienced by the TEgy and TMp,. modes will prevent theif oscil~
lating, a small signal analysis should be conducted.that includes the

effects of the second harmonic beamline.

¥, Solution for Inherent Losses

A realistic application of the two-layer dielectric-loaded
waveguide theory is to determine the amount of attenuation resulting
from loss inherent to the dielectric. It is assumed that all loss is
represented by the imaginary part of the dielectric constant and that

it is distributed evenly throughout. The barium tetratitinate con—

sidered here has a real dielectric constant of €' = 38 and a loss
8"
tangent of §=%7v 6.5 x 10_4. Thus, a two—layeér analysis can be

performed with ey = g, (38 - j0.025).

Figures 6-34 and 6-35 show the attenuation which result
from €" = 0.025. The curves are similar to those found for larger
values of £". One interesting observation is that the jump in
attenuation as the lossless cutoff is approached has becdme much
éteeper for this small €". As pointed out before, this ffeqhency

behaves more like a "true" cutoff as £" becomes smaller.

wh '
At midband (T~ = 3.35) the TEg; mode has ad = $.00905.
This corresponds to a cold circuit loss of 3.0 dB over the 15 cm
total length of the amplifier (as opposed to the 10 cm length of the

loss pattern). For the Mg mode the loss is about 3.1 dB at the same
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frequency. This is a surprisingly large amount of loss for those
accustomed to dealing with losses associated with an empty waveguide.
As expected, the TEg, and TMpo modes experience much smaller losses.

whb :
At ¢ = 5.0, the TEgy mode will have a loss of 0.09 dB and the TMgp,

mode 0.08 dB, each over a length of 15 cm,

G. Validity of the Two-Layer Model

The two-layer model makes many assumptions which are
necessary to make & complicated problem tractable. Some of these are
fairly standard, such as assuming an infinite length waveguide with
perfectly~conducting, infinitely-thin walls. Others seem to be less
justified. It was assumed that a third, very ﬁhin, highly conductive
layer added‘to the inside of the dielectric cou;d be modelled as if
all of its loss where distributed evely throughout the dielectric
layer. This simplified the problem a great deal; but only at the
coét of losing all knowledge of the physical strﬁctu;e of the third
layer. So even though it was learned that a dielectric layer with
€' = 1.15 will adequately prevent oscillations, there is no way fo
translate this into a thickness and conductivity of the third layer.
Experimental evidence might be helpful here, but it is evident that a
true three-layer analysis is needed.

A second problem arises from the simplistic assumption
that £€" does not.vary with frequeney. Although this may belmore or
less true when considering a narrow range of frequencies, as W gets
smal ler E".is certain to be quite different. This actual dependence
on frequency, though, is not easily seen. This is because €" is not a

true physical quantity but rather an invented factor —- the result of
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combining two very different layers. The thin lossy layer would

probably be composed of a graphite-like substance and, thus, would

have its own €" of ﬁé%} vhere 0 (the conductivity of the substance)
is also a function of frequenéy. The dielectric layer has its own
intrinsic loss, and its ¢' and " must obey the Kronig-Kramers
relations. How these fa;tors all combine to give a single £" and how
this ¢" varies with frequeﬁcy is not immediately evident. Perhaps it
is best, then, to consider ouly the results from tﬁe frequeﬁcy bana

| ob |
of interest, ¢ = 2.95 to 3.75, where €" should not have a strong
dependence on frequency.

Although it is true that the two-layer model is not the
most accurate way to present a three—layér lossy wavgguide, its
analysis does provide a wealth of qualitative information. It has
been learned that the addition of loss in a sufficient amount to
suppress TEpj-mode oscillations does not seriouslylaffect either the
phase constant of the wave or the rf magnetic fields in the guide.
Thus, interaction between the beam and the wave is not seriously
threatened. It has been 1eafned that the TEg2 and TMpyg waves are not
as strongiy attenuated as the TEp) wave for a given amount of loss.
Also, the manner in which the attenuation varies with relative changes
in loss has been determined.

The two~-layer model must be viewed in the appropriate
manner., It is an easy, simplistic, but not highly accurate way to
gain a great deal of imsight into the behavior of_wavé propagating in

the three~layer lossy dielectric waveguide.
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VII. | THREE-LAYER GﬁAPHITE MODEL
A. Formulation

A thin,.very lossy layer of material is added to the
inside of the dielectric loaded waveguide shown in Figure 3-1. This
layer will most likely be composed of graphite or some graphite~like
substance and so can be modelled as a lossy dielectric having a
complex scalar permittivity ¢ = (g' ~ j €") €,. The real part of
€/€y is assumed to be unity, while the imaginary part is a function

of U; the conductivity of the material:

M = 9 ' (7.1)
UJEO . . .

The geometry of this model is shown in Figure 7-1.

Anaiysis of the three-layer ﬁodel has two important geals.
First, it is desired to find the attenuation that would result from a
thin lossy charge suppression layer, and the layér's affect on the
phase gonstaﬁt of a propagating wave. Second, the necessary thickness
and conductivity of a layer used to prevent oscillations need to be
detetrmined.

Due to the complex nature of the three-layer analysis
onily the TEg] mode will be considered in detail, though éome abbreviated
fesuits for the TEgp mode will also be presented. A complefe deriva-
tion of the three-layer dispersion equation, relating the axial

propagation constant and the frequency, is given in Appendix One. As

with the two-layer dispersion equation only the azimuthally symmetric
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(n = 0) modes are considered. For the TEgp, modes equation (Ai_3i)

can be rearranged to yield the dispersion relation:

Ckpp H1 Up' kpg My f3 : kpp My Up!
— e Up-Ty' ‘ Us-Us'| - [—ounu o Ug-Usy'l.
Lkpy Hp U kpy H3 £y kpy Ho Ug
rkp3 UZ f3
. U4*U4' =0 ) (7.2)
Lkpo H3 £
where: koy = w0l e -k 2
2 L2
kpy = W Wy &y -k,
_ 2 2
kpg = W2 My 25 ~ &,
U = 3 (ko @) wyt o=y (kpp a)
U, = Jo (kp2 al ete,
U3 = YO (kp2 a)
U4 = JO (kpz b)
U5 = YO (kpz b)
£3 = J5 (kp3 B) ¥Y,' (kpj3 c) = Yo (ko3 b) Jo' (kp3 c).

B 0= 35" (kpg D) ¥5' (kp3 ¢) - ¥, (kpg b) J,' (ko3 c).
This equation is solved for the complex propagation constant at a

given real value of frequency. WNormalized parameters are again used:

We a b
Oc and 8¢ are computed from values of C s os and e+ In thi; analysis

it is assumed that MIR = Har = W3g =1, €pp =1 - JE and €3p = 38.

b a
The thickness of the dielectric is determined by T = 0.892 while

and €" are allowed to vary.




The conductivity of a typicél graphite sample at microwave
frequencies is about ¢ = 7 x 104 %/m. TFor a frequency of 41 GHz,
equation (7.1) yields a relative dielectric comstant of €9 = (1 -
j310060). This extremely large value of £4 can lead to severe com-
putational problems when trying to solve (f.2). Evaluation of
Jo (a + jb) gives an answer roughly proportional to exp (b). Thus,
having a dielectric constant om the order of 3 x 104 risks computer
overflow, roundoff errors, and serious difficulty in the convergence
of complex root-finding routines. In fact, the computer may be asked
to handle numbers as large as exp (1000) = 10%3% and as small as 1 ;t
the same time.

These problems can bé avoided by not calculating
Jo (a + jB) directly. Instead, the asyﬁptotic_expansions fof Jo and Y,
can be substituted directly iato the dispersion relation, and it can
be manipulated algebraically until a more computer—oriented form is

obtained.

The asymptotic expansions for Bessel functions of large

argument are given by:

2
Jn (z) E\ﬂ;;g [Pcos (X) - Qsin (¥)]

2

7z [Psin (X} = Qcos ()]

(7.3)

<
=]
Loy
N
p—g
I

kil
where: X=z-(2n+1)% =x+ jy.
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where: P =1, P. = -P, (Un } [41_3]2) (un._ [41"1]2)

° v A (21) (2i-1) (82)2
0w fo - L3112 (uy - (4i01)?)
. L% = Qi
° & ' t (21) (2i+1) (8z)2
and: Un =4 nz.

The sines and cosines in equation (7.3) can be written as:

sin (X) = sin (x).cosh (y) + j cos (x) sinh (y)

cos fi) cos (x} cash (y)»— j sin (x) sinh (y),

and thus the Bessel function expansions become:

' [2
Ty (2} =47, [CA - j sB]

2
Yo (2) =37 [CB + j sA]

Ir

where: A

Pcos (x) - Qsin (y) C = cosh (y)

=~}
it

Psin (x) + Qcos (y) ]

]

sinh (y).

The dispersion equation (7.2) can be written as:
[Mp U2-Up"1 [Mp Us-Us'] - [Mp U3-U3'] [Mp U4-U4'] =
ko2 Hp Uy
where: My s —
kop W2 Uy
ko3 M £3

koo W3 £4
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Now, letting:

z] =kpg a = x1+ iy

1

- - ' (7.8)
29 = kpy b Xp * 1 ¥y |

il

Al = P] cos (x1) - Qp sin (x;) Ag = Py cos (x9) - Q9 sin (x9)

By = Py sin (x;)} + Qq cos {x;) By = P, sin (25) + Qy cos (x,) (7.9}
C; = cosh (y;) Cy = cosh (yg)

81 = sinh (yp) 'Sy = sinh (ygp)

Then

2 . 2 ’
Uz ®NTzy [C) 4) ~ 581 B1]  Us =*NTzy [y A9 - j Sy Byl

2 2 (7.10)
Us Nz [cy By + ] 1 41! Us =N Tzy [Cy Bg + j Sg Ag].

o

" The Bessel funcrionm derivatives Up', U3', Uy', and Us' can be found

by employing the recursion relations for Jy and Y. From these it is

fqund that:

2 -

Jn' (2) 2+f7, [CA' - j SB']

(7.11)

2 -

Yo' (z) =47, [CB' + j sA']
o .

- where: A" (n, z) = 7 A(n, z) -A(n+1, 2)

n
2 B (n, z2) -8 (n+1, z).

B' (n, z)




These asymptotic expansions for the Bessel functions and their
derivatives can now be substituted into the dispersion equation (7.7).
Multiplying this out and using the relations:
sinh (y) - y3) =81 ¢; - ¢y 8, (7.12)
cosh (YI - yz) = 0y Cy - 81 &5
yields the new form of the TEQy dispersion egquation:
My My [(A; Bp' - Apy' By) - ] (Ap A9' + B; B2') tanmh (y1 = ¥92]
o+ My [(Az By — Ay Bg) + j (A3 Ag + By Bg) tanh (y1 - yo)l 7 (7.13)
*My LA" Byt - ApY Bp') + 5 (Ap' A" ¢ By By') tamh (yq - yo)l
+ [CA1" By ~ By' Ap) - 7 (A1' 4y + B)' By) tamh (y; - yp)] =0
with the new values of Mj and Mjp:

kpo Uy Ayt -] By' ' tanh (yé) (7'14)
M o= — .
kpp Ho Ay = 1 By tanh (y,)

ko3 Mz (A3 B4' - B3 A4') - 5 (A3 A" + B3 B,') tanh (v - y,)
My = —

ko2 B3 (A3’ By' - B3' AL') - j (A3' A4' + B3' B4') tanmh (y3 = ya)

where: zZo = kpra = x5 + j y,

zg3 = kp3b = x3 * j yj

zZ4 = kp3c = x4t ] oy

Although equation (7.13) seems much more complicated than
(7.2), it is far easier to implement on the computer. The ganh
function is readily available on most systems and as long as all

fractions are cleared of their denominators, (7.13) should not be

prone to overflow or roundoff errors. Equation (7.13) also has the

added benefit of extremely'rapid convergence,




" B. Solution for TEp1 Mede

Equation (7.13) has been solved numerically (as described
in Appendix Five) for the case of m = I, giving solutions for the

TEg) mode. Figures 7-2, 7-3, and 7-4 plot resulting values of

attenuation against the relative thickness of the lossy layer for

we
various £" at frequencies of g = 2.95, 3.35, and 3.75. The general

trend of these curves is for attenuation to rise sharply as the lossy
thickness is increased from zero, then slowly ievel off. As the
thickness is increased much further, it appears to reach-a point
beyond which a;tenuation does not increase appreciably. This point
is a definite function of frequency, being reached sooner at higher

we ‘
¢ - Some insight into this effect cam be gained by looking at the

field plots of the lossless two-layer waveguide shown in Figures
6-14, 6-15, and 6-16.

| The electric field in the two~layer guide, E¢,-is seen to
be largest near the dielectric linmer and them to fall rapidly to zero
at the aiis. When a thin lossy sleeve is placed inside the dielectriec,
it is exposed to maximum electric field., As its thickness is increased
the layer encompasses more and more electric field until any further
increase takes in reiatively little field. This point corresponds to
the thickness at which the attenuation levels out. The field plots
alsc show a dependence of Eg shape on frequency. The higher the

frequency, the quicker E4 falls toward zero and the sooner the

attenuation levels off.
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Figures 7-2, 7-3, and 7-4 show a definite dependence of
attenuation on frequency. For a given value of ¢", the maximum
attenuation decreases with increasing frequency. This is contrary to
what was found using the two-layer theory. The two-layer case showed
a trend of slightly increasing attenuation with increasing frequency,

Figures 7-5, 7-6, an& 7-7 show plots of aftenuétion vs
relative thickness for va}ues of ¢" = 50 and 100. It is apparent

that a/c is becoming a very cumbersome parameter at higher £". Thus,

a
a new parameter is defined: w = 7 - . Here w is actually the width

(thickness) of the lossy layer normalized to the outer guide radius.
This is much easier to visualize than a/c.

Figures 7-8 through 7-16 are ﬁlots of attenuation vs w
for a wide variety of €" up to 50,000. In the range of €" = 200 or
greater it appears that, for ac <5.0, w and dc are related in a
nearly linear manner. Looking back at Figure 7-2 it is seen that
this region corresponds to the portionm of the graph very near afc =
0.892. At this point oc is rapdily increasing with a/c, and has unot
yet begun to level out. This can be viewed as the "linear" region of

3¢ acy
the attenuation, where the slope B(a/c) is relatively constant.

Figures 7-8 through 7-16 also show a linear relationship
between ¢" and Cc, Doubling €" at a given frequency and thickness
in the linear region also doubles Oc. The overall relationship
between Oc, w, and €' is shown in a very couvenient form in Figure

7-17. Here values of w and ¢" are plotted to give a certain ac.
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From these curves a choice of £" and w can be made which would give
the value of attenuation desired for a particular need. It is seen
from this plot that the curves do not depart from straight lines
unﬁii about £" <30 or w >10~2. This further defines the "linear
region" for those values of ac.

Figufe_?-i? allows for Oc to be represented im a very
useful faéhion:

ac ¥ K_ o1 (w) * w:* g _ {7-15)

when Qc is in the linear region. A three-dimensional regression
analysis done on Oc, w, and €" over the region of interest gives the

values of K,.q; shown in Table 7-1. These values of Kg.g1

e N '
[ Kaco1
2,95 4.50
3.35 4.41
3.75 4.277

Table 7-1. Average Value of ¥,.g] Calculated
for Various Values of Frequency.

will give Gc to an accuracy of at least two figures in the linear

region. The depeﬁdence of attenuatien on frequency can now be

viewed as resulting from Kgeoi (W), a non-linear function of. frequency.
Equation (7-15) can be employed directly to calculate the

properties of a charge—suppression layer. ‘For example, assume that a

layer of graphite is added to the amplifier to bleed off excess

charge. It is desired that thisriayer be of such a thickness so as

to produce an attenuation of less than oc = 0.01 (3.3 dB over 15 cm).

From equation (7-15) it is found that:

v = _0.01 = 7.4 x 1078 |
4.41 x 31000
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This is less than a thousandth of a skiﬁ dept at this frequency. By
similar reasoning, a lossyfiayer thickness of one skin depth will
result in an attenuation of more than 3300 dB over the l5-cm lepgth
of the amplifier.

Remember that the physical process by.which the loss is
applied to the waveguide will put é lower limit on the thickness of
the lossy layer. As a layer of metal or graphite is applied by common
techniques such as vapor deposition.or carbon arcing, at first a
little bit of the material must stick to the dielectric. Since the
sticking coefficient of the graphite to the dielectric is less than
the self-sticking coefficient of graphite to graphite, the material
will adhere éasier to previously deposited graphite than to the
dielectric., Thus, the material deposits in islands, bf clumps. The
applied lossy layer won't be goodlfdr D.C. conduction (i.e, charge
bleed-off) until the clumps fuse together to form a continuous layer.
Thus, there exists a minimum depth below which D.C. conduction will
not take place. For graphite this depth has been found to be about
100-200 X. From equation (7-15) it is determined that an average
thickness of w = 2.56 x 1076 (100 &) produces 2 normalized attenuation
of &c = 0.3505 which is about 117 dB over the 15 cm total length of
the amplifier. It appears, then, that it will probably1be necessary
to reduce the conductivity of the lossy material to prevent excessive
attenuation, Thus, pure graphite appears to be a poor choice.

Equation (7-15) can also be used to calculate the geometry

of the loss pattern required to suppress TEg; oscillations. It was

determined earlier that a loss pattern with the form: L (z) = 9.07

sin® 10 m) ‘dB/cm would be sufficient. This corresponds to an
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attenuation of: ac (z) = 0.407 sin® (?B'W). "8ince equation (7-15)
describes a linear relatiounship between tc and w, the thickness of
the applied lossy layer, w (z), will be of the same algebraic form.
This thickness is plotted iﬁ Figure 7~18 for various values of £V,
The figure shows how a cross section of the lossy layer Qould appear
if cut along the z-axis.

As with the two-layer case, it is important to determine
how the real part of the propagation constant changeé with the addition
of loss. In Figures 7-19, 7-20, and 7-21 a factor ABec = Bec (") -

Be (E" = 0) has been plotted atainst the thickness of the lossy layer.
ABc is a measure of the amount by which Bc has departed from the loss-
less Bc. These figures behave ﬁuch the same as did the ones showing
the attenuation. As the thicknéss is increased, ABc shifts around
until a point is reached where it levels off. For small values of w
(i.e. the linear region of the attenuation curves), ABc appears to be
fairly well behaved. This is again shéwn in Figures 7-22, 7-23, and
7-24 which are log-log plots of ABc vs w for a wide range of €',
These curves are again very straight but have a slope of two rather
than one. Thus, in this region of small w, ABc is prapor&iqnal to wl.
It is also apparent from these curves that ABc is pr0portionél to £"2,
Therefore, in this region, ARc can be written as:

Me = Rg gy (W) wh -2, (7-16)

Values of ¥ggp1 at various frequencies are given in Table 7-2,
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Figure 7-20. TEgy ABe = fe (€") ~ Be (" = 0) vs w at
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¢ = 3,35 for e" = 5, 10.
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c el

295 -0.386
3.35 ~0.230
3.75 0.069

Table 7-2. Average Value of Kgep1 Calculated for Various
Values of Frequency.

Equation (7-16) can be used to calcualte the shift in B for a desired

amount of attenuation. For example, to get an attenuation of Ge =

0.407 at %E'¥ 3.35, values of w = 2.3 x 1076 and €" = 31000 can be
used. This would then result in ASc = (-0.230) (2.3 x 1076)2 (31000)2
0.0012. Such a shift would probably not produce any significant
reduction in the interactionm with the electron beam, agreeing with

the predictions of the two-layer analysis. For the loss pattern in
Figuré 7-18, this would be the maximum shift in Bc. Since equation
(7-16) states that ABc is proporfional to w2, thé shift in Be as a

function of positicun on the z-axis can be writften as: ABc (z) =

.33
0.0012 sin (10 ).

C. Solution for the TEgy Mode

A solution for the TEp2 mode can be found by‘solying for
the second root of équation (7.13). Figure 7-25 shows the attenuation
a TEgy wave would experience as a function of normalized layer
thickness. The curves shown are for large values of ¢" ranging from

10,000 to 50,000, which are most likely to characterize a very lossy
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. we
material. The frequency is ¢ = 4.82, the intersectiom point of the

8 = 2 beam line and the TEg, mode line. It is near this frequency
that TEgg oscillation is most likely to occur. A linear relatiom-
ship between G¢, w, and €" is again seen and can be written as:

| dc = Kgugp (W) " " - w (7-17)
where Kyo0g (4.82) = 0.00806, Comparing Figure 7-25 with a similar
TEpy drawing, such as Figure 7-15, reveals that for a given €" and w,
a TEpg wave is atteﬁuated much less than a TEg; wave.. This is more
easily seen by comparing the values of K,.0; (3.35) and Ky.p2 (4.82):

Kool €3.35) 4.41 "
= 7.

Kgeos (4.82) 0.00806

Thus, an equivalent w and €" in the linear region will attenuate the
TEg) wave about 500 times more tham the TEgy; wave, at the given
frequencies. This large difference in attenuatibn is very much
the same as was predicted by the two~layer theory., The shift in B¢
has not been plotted here since it is almost negiigible. At " =
50,000 Bec changes by at most 0.0016%.

It is very interasting to examine the behavior of the
TEpy mode outside its linear region. Figure 7-26 is a plﬁt of
attenuation vs thickness for a fairly large range of w. It is seen
that near w = 0.1 the attenuation takes a sharp upward jump; growing
by nearly two orders of magnitude. A limited amount of insight into
this behavior is gained by 1ookiﬁg at Figure 6-33 (which is a plot of
the two-layer lossless fields for the TEgy mode). These curves show
that the electric field Ey starts very small near the dielectric and

rises sharply, peaking about halfway between the center of the guide

and the dielectric.
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Whén a thin lossy sleeve is p1aced inside the dielectric
liner it will not intercept much of the electric field. However, as
its thickness is increased, more and more field is encompassed. This=
explains the general trend of Figure 7~26 but not the reason for such
an abrupt jump. It should be remembered, though, that adding the
lossy layer perturbs the fields in the waveguide. Widening the layer
increases the perturbation. To fully understand Figure 7-26 it would
be of value to investigate the three-layer fields, which have not

been treated in this study.

N We :
The phase of the TEgy wave at G = 4.82 and " = 50,000

is plotted in Figure 7-27 for larger values of w. It is interesting
to note that a; roughly the place that oc abruptly increases, fc

abruptly decreases. 1In fact, Bc falls by about two orders of magni-
tude -- the same amount gc rises. Under these conditions the point,
w = 10 x 1072, can be viewed as a type of pseudo-cutoff point, where

TEgo propagation is markedly reduced.

D. Solution for the TEg; Mode with Frequency Variable e"

When the manner in which attenuation varies with frequency
was discussed earlier, the fact that " is a function of-frequency
was mot takeq into account. That is why no plots of atte;uétion vs
frequenﬁy were made. This dependence can be easily incorporated into

the analysis by recalling equation (7.1):

o= 9 (7.1)
WE g

where g is assumed to be constant with frequency. Assuming further

that 0 = 7 x 104, which is the conductivity or graphite in the
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microwave ;angé, " has been plotted against true frequency in Figure
7-28. The dotted lines show the frequency band of the amplifier:

£ =36 to 46 GHz. These values of E" can be used in the dispersion
equation_to solve for cc and Bc which will then have a more accurate
dependence on frequency.

The results of the solution for the TEp; mode with
frequency dependent €" are shown in Figure 7~29 and 7-30. TFigure
7-29 is a plot of attenuation vs frequency for three different values
of layer thickness. Attenuation is again seen to be decreasing with
increasing freéhency. The arrow shows the lossless cutoff frequency,
and, as with the two-layer case, the attenuation shows a fast-rising
increase as this value is approached.

Figure 7-30 plots ABe = Be (€' = 0) ~ B¢ (") against
frequency for four values of thickness. (It should be noted that the
positive portion of the 4Bc axis employs a different scale than the
negative portion.) Two inte;esting points are found from Figure
7-30. First, there is a point -- at £ % 44.5 GHz —- where ABc is zero
for all thicknesses. At this frequency Bc does not change with the
addition of the lossy layer, regardless of the layer's thickness.
Second, as the frequemcy approaches lossless cutoff, Afc increases
rapidly in the negétive direction. This is as was found in the two-
layer analysis; that is, althéugh Bc goes to zero at cutoff in the
lossless case, it remains finite, but very small, in the lossy case.

E. Comparison of the Two-Layer and Three-Layer Analyses

When used to analyze the same three-layer waveguide,
there is certainly little doubt that the three—~layer model gives more

accurate and useful results than the two-layer model. The failings
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of tﬁe two-layer model are made evident by some marked discrepancies
between two— and three-layer results, Among thése are the differences
in how attenuation varies with frequency and the relative differences
between the magnitude of TEg; and TEdz attenuation,

Thére were, happily, also some important agreements,

Both models found linear relationships between Cc¢ and €" and so a
relation could be dragn between Kgop and Kyepy. Also, both models
came to the important“conclusion that the addition of a lossy léyer,
thick enough to suppress TEp] oscillations, will not perturd B to the
extent that interaction is jeopardized,

The importance of the two-layer model lies in its
simplicity; that of the three-layer model in its accuracy. The two-
layer dispersion equation is very simple and presents little
computational difficulty due to its low values of €". The three-

layer equation is much movre complex and necessitates some clever

algebra to make it computer compatible., The two~layer model gives

quick and easy views of the field patterns, whereas the three-layer
fields are much more complex and are not treated in this study,
Perhaps the two-layer model's most accurate and useful application is
iﬁ calculating the attenuation and phase constant due to lbsées
inherent to the dielectric liner. On the oﬁher hand, the three—layer
model is best used as a design tool. Given a desired attenuation, it

can find an appropriate value of the conductivity and thickness of

the required lossy layer.
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VIII. ‘ THREE-LAYER FERRITE MODEL
A, Formulation
A thin layer of a ferrite material can be added to the
waveguide of Figure 3-1 for the purpose of suppressing ei;her funda-
mental or higher order mode oscillations in the amplifier. The
frequency dependenfllossy characteristics of ferrites are well.known
and provide aﬁ.interesting means of adding attenuation to the amplifier

4

circuit. The ferrite would be applied in much the same wanner as

graphite -- as a thin layer just inside the dielectric. The geometry

of thig ferrite/dielectric-loaded waveguide is shown in Figure 8-1,

The ferrite layer is modelled as having a complex scalar

permittivity €5 = (€9' - j £,") €, and a tensor permeability:
——s .U i Mg 0
Hg = -3 Uy U 0 (8.1)
0 0 M)

where U and U, are complex functions of frequency. Although jjj can
vary somewhat, it is assumed te be constant and equal to unity through-

out this analysis. Losses in the ferrite are represented both by the

-
imaginary part of g9 and the imaginary parts of the entries of Ug.

Clarricoats [6] suggests a very useful way to express the entries of

U2 in a mathematical form. He derives the phenomenological relationships:

u'='1+%_‘ P, O - 1) . Py (0p + 1)
: -(om - 1)? +o¢m2 (G, + 1)2 +Q°m2
S 1 [ Py (o - 1) _ Py oy + 1D (5.2)
2 : (6, - 1?4 amz (o, + 1)2 +0tm2 .
utto= "é‘ r . ‘n fm + fnon |
(o, - 12+ amz (o, + 1)? +ocm2
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" 1 Pnop ) Pp %n
Pat T2 2 7 2 2
(om - 1) + O (cm + 1) + o
whera: uo= u - ju"
Ma = Ma' = 3 Ba".

o

-The dimensionless parameters P, Ops and G are determined by the
wave frequency, external magnetic field in the waveguide, and the
magnetic and geometric properties of the ferrite. The factors O and
U should not be confused with conductivity or attenuation. The

ferrite parameters are given by:

YHyes
03 =
m w
Y4 T Mg
P= — (8.3)
YAH
cl = .
T
2w

Here, Mg is the magnetization of the ferrite, AH is the linewidth,
and Hyeg is the resonant magnetic field. The gyromagnetic ratio, Y,
is taken to be 27 x 2.8 x-10® in MKS units. The resonant magnetic

field is found from:

Hres = [Hgy + Hyp + (N, - N,) 4TFMs]l/2 (Hey + Hyp *

vy - ) AL ' (8.4)
In this formula, Hoy is the external wmagnetic field along the axis in
the waveguide, H,, is the anisotropy field, and N;, Ny, and N, are
shape dgmagnetizing factors. determined by the geometry of the ferrite.
The ferrite sleeve is assumed to have the shape factors N, = N, = 0,

Ny = 1 throughout the analysis. 1t is found that varying these

factors by small amounts does not drastically alter the results,
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The number of variables in this three-layer waveguide
problem is quite 1arge. To examine all possible combinations would
prove a time-consuming task indeed. Thus, a single set of parametérs
will be established, with one of these vériables allowed to vary in
each of the cases examined. The choice of a standard set of ferrite
parameters should be made from a range of realistically achievable
values. 1In the microwave region, commonly available ferrites will
have parameters falling into the ranges listed in Table 8-1, O0Of
these, the parameters chosen to represent the standard case are shown
in Table B8-2., Ferrite materials are very versatile in the large
range of parameters that can be obtained. A material can be manu-~
factured which exhibits the desired parameters by manipulating the
metallurgy of the ferrite: particle composition, grain size, mixture
ratios, etc, A value of €¢" = 0 was chosen so that the loss due to

+—
the imaginary components of }g would be more apparent. The value of
Hopn is determined by maximizing M'' at a desired frequency. It can
be shown that maximum W'' (which is nearly equal to U,'') occurs for:
o 2 = 24 @ 2+1)- @2+ 1) (8.5)

where: 0 < Op< ¥3.
This value of 0 is substituted (8.3) to oﬁtain a value of H,.,.
This in turn gives the necessary value of Hy, from equation (8.4).
Thus, H,, is used to control the frequeney at which peak W'' occurs.

To provide maximum flexibility of results, normaﬁized

values- are used throughout the analysis. All field values are
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Table 8-1: Available Range of

Ferrite Parameters

Parameter Min, Valye Max. Value Units
£9' 12.0 18.0
g9’ 0.01 1.0
Hap 0 30,000 oe
4T Mg - 2,000 4,000 oe
AH 2,000 6,000 oe
Table 8-2: Chosen Standard Case Pargmeter.

Paramater Value Units

£p' 12.0

g€q'! 0.0

alc 0.865

4 Mg 4,000 oe

AH 5,000 oe

Haﬁ © 2,477 oe

Hay 14,300 oe

Table 8-3: ¥Normalized Standard Case Parameters.

Normalized Parameter

4T Mg

112

Value

0.38835
0.24051
3.35

0.48544

2.35726




normalized by Hgy, the external magnetic field in the waveguide.

This allows the use of the following formulas:

(YC | (Hres)
- Hex
¢ H

ex

we
(__) (8.6)
\C

1/2
Hres Han ol MS Han
= jl1+ —+ (¥ - N,) 1+ +
Hex Hex Hex Hex
4w Mg 1/2
(Ny - N,)
Hex

Table 8-3 lists the equivelant normalized values of the standard case

parameters.

B. Investigation .of Ferrite Parameters

Much insight into the behavior of the ferrité;léaded
waveguide can be gained by examining the behavior of TR TR TP
and u,'"'. Equations (8.2) have been plotted against frequency for the
parameters of Table 8-3., This is shown in Figure 8-2. The frequency
depen&ence of these factors is easily seen. The shape of the J''

curve suggests that attenuation will be limited to a band of frequencies
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e .
centered on or near (E“) peak py". This "notch-like" behavior coylq

we
have very useful applications. For instance, (E’) peak H" could be

centered on the frequency at which the s = 2 beam line intersectg the
TEg2 waveguide mode, thus attenuating these higher frequencies but
not affecting the fundamental interaction.

It w;s mentioned before that the frequency at which W"
reaches its peak is determined by the an;sotropy field, Hg,. This

4T Mg
relationship is shown graphically in Figure 8-3 for Hegx =0.39. 1In

this plot, a value for Hyp can be chosen to give the desired value of

We : e
(E_J peak U". Since H,, can't be negative, it is seen that (E_) peak

W' cannot be made smaller than about 2.8, using the standard case

parameters. Figure 8-4 shows how this choice of H,, varies with

we )
¢ /) peak " is set at 3.35

hr Mg (

Hoyx , assuming
| The effects of other parameters have also been examined.
Figuré 8-5 demonstrates how the choice of AH, the linewidth, changes
the shape of the P" curve. As AOH is increased, the peak value of K"
becomes smaller, and the curve widens out. Thus, the vélue of AH
heipé‘determine the band of fréquencies over which the atténuation
will be effective.
Figure 8-6 shows how the peak value of " depends on both
AM and 47 Mg. As just mentioned, U" is largest for smallest AH. It
is also seen that W" .. is a function of 4T Mg. As 4T M_ is made
increases;

targe, W'

1
max
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Using these preliminary results, an early design criterion
can be hypothesized. First, a choice of H,, is made to position
maximum loss at the frequency'desired. Next, a value of AH is picked
depending on whether highest loss is desired, or largest frequency
spread. This should be done with a certain logical value of 4m Mg in
mind. The major problem with this system is, of course, that there
may not be a real material with the chosen properties. Practicality
will probably necessitatg a compromise in the final choice of ferrite
parameters and, thus, in the frequency response of the attenuation.

C. Solution for the TEp; Mode

A complete derivation of the n = 0 three-layer ferrite-
loaded waveguide dispersion relation is given in Appendix IV. 1Its
solution is considered here for the TEg) mode., This mode is the
first root of equation (A4,17) and is found by beginning with the two-
layer lossless TEg} mode and slowly increasing the lossy layer until
the desired thickness is reached. That is, w is increased from 0.0
(the lossless, two-layer case) to, for example, 0.627 (the standard
parameter case) so that convergence at this ﬁhickness can be more
easily obtained. Modes propagating in a ferrite are named TE and TM
by how they act as the ferrite approaches a dielectric; that is, as
Uy > 0.

As before, a Qalue of k,c = ac - jBc is determined from a

e
value of ¢ by solving the dispersion equation. (Full details of

the method of solution are given in Appendix Five.) Figure 8-7 and

8-8 show the solution of (A4.17) for the standard case parameters.

The expected dependency of attenuation onm frequency is clearly seen
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in Figure 8-8. The shape of this plot is remarkably similar to the
shape of the W" vs frequency plot seen in Figure 8-2. What had not

been anticipated, though, is the shift in frequency of the peak value

we
of attenuation. Whereas, peak K" is chosen to dccur at g = 3.35,

We
peak attenuation takes place at ¢ = 3.75.

Figure 8~7 is a plot of the w —-f diagram for the standard
case parameters. 1t is éeen that the additiom of the ferrite layer
causes the TEg; waveguide mode line to shift quite a bit to the right.
This could result in problems with interaction if the beam line was mnot

corrected to account for the shift. This amount of B shift appears

We
to be a function of frequency. At higher frequencies, above g =

3.5, the standard case line seems to be less displaced from the
lossless case.

The manner in which cc and Be vary with changes in the
thickness of the ferrite layer is shown in Figures 8-9 and 8-10.
Figure 8-9 is a plot of APe (w) = Bc (w) - Bc (w = 0}, showing the same
shift in Bc seen in Figure 8-7., Two frequencies are shown,‘and,'as
was noted before, the amount of shift at a given thickness depends on
the ffequency considered. *The'shape of the curve is as expeéﬁed,
bending over so that a unit increase in w does not.give quite as large
an increase in ABc as the one before.

Figures 8-10 is a plot of attenuation vs frequency for

various values of relative thickness. As afc is increased the

attenuation also increases. As with ABc, the increase in Gc with a
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uni£ increase in a/c is smaller for larger afc. An interesting ef fect
seen in this figure is that the position of the peak value of
attenuation‘depends on a/c. As thickness is increased, the freQuencf
of peak atténuation moves closer to the frequéncy of peak U",

The effects of various values of magnetization on the_
attenuation of the TEj; wave is shown in Figure 8-11. The results
from Figure 8-6 revealed that a Iarger value of 47 My gave a larger
peak U'. This same effect is seen in Figure 8-11 where a larger
4T Mg results in a larger CGc. In fact, the correspondence between
the two is nearly one to ome. A change in 4T Mg from 0.2 to 0.44
results in a change in MW", of about 2.0 times and a change in ac of
about 2.2 times., 1In contrast, Bc remains relatively constant with
respect to changes in 4T Mg. The same change in 47 Mg results in an
increase in Bc of only 2.5%. The dotted line in Figure 8-11 highlights
another interesting observation. Increasing AFVMS causes a shift in
peak de away from peak W', The éotted line shows the locus of this
shift.

It has been mentioned that the frequencies of peak Oc and
peak H' do not coincide. The effect of varying the position of pezk
W (by correctly choosing Hu,) is shown vividly in Figure 8-12. As
the frequency of peak 1" is decreased, the frequency of peak ac
follows close behind. Figure 8-13 displays the relationship between
the two frequencies, which turns out to be fairly close to a straight

line. .This curve could be very helpful as a design aid. For example,

. . . . . e .
if maximum attenuation is desired at a frequency of 7 = 3.35, Figure

8-13 shows that the ferrite parameters should be chosen so as to put
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maximum H" at &7 = 2.88. Another interesting fact brought out inm
Figure 8~12 is that the maximum value of Gc is a function of the
frequency at which it is maximized. This arises from the dependence

of maximum oc on Hy,.

Figure 8-14 shows the effect on ac of varying AH. Here

We

' has beem maximized at G~ = 2.88, so Figure 8-13 indicates that
e AH

peak tc should occur at g~ = 3.35. For the standard case of Hg, =

ex

AR
0.437, this is seen to be so. As Hyy is descreased below this value,

the attenuation curve becomes taller and more narfow, and the frequency
of its peak shifts slightly towards the frequency of peak H". This
change in shape was predicted by Figure 8-5. TFigure 8-15 is a plot

of 8Bc (AH) = Be (AH) - Rc (2-layer) showing how the shift in RBc

e
changes with varying AH. This curve is interesting in that, at g =

we
2.95, LBc decreases with increasing AH while at g = 3.35 A48c¢

increases with increasing AH. This is probably due to changes in u,'

and ' with frequency as shown in Figure 8-2. Here u,' and P'-1 are

seen to cross the axis. at about the same point where ' reaches its

we we
peak (at g = 2.88, which is quite close to g = 2.95).
Change in £5' and €£," also affect the attenmuation and

phase constants. As might be expected, changing £9' has more of an
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impact on 8c than on ae. Figure 8-16 is a plot of Ace (g5') =ac (g,") -

te (7' = 12), showing the change in attenuation from the standard
case as a funciion of €9'., The amount of change is a definite function
We we

of frequency, being nearly 10 times greater at 7 = 3.75 than at § =

We
2.55. However, even at g = 3.75 and €' = 8 the change amounts to

only 0.07 ~— about 9%.
The effect on PBc is much more dramatic. Figure 8-17

demonstrates this with a plot of ABc (€5') = Bec {(g4') - Bec (2-layer).

we
It is seen that at 7 = 3.35 a change in €9' from 12.0 to 18.0 changes

ABc from 1.4 to 2.0 -- about 43%.

Figures 8-18 and 8-19 show. the effects of various €o" on
the attenuation. Figure 8-18 plots dc against frequency for values‘
of €" of 0.0, 1.0, and 2.0, The curves for €7" = 1.0 and 2.0 display

an interesting behavior at lower frequencies, curving sharply upward

. Cowe
as they approach a certain limiting value of 7. This is much like

the effect .seen with the lossy dielectric cases where the attenuation

usually took an abrupt upward leap as the frequency neared lossless

cutof £,

.. Figure 8-19 is a plot of Ace (g9") = ae (g9") - e (g," =
0). The relationship between Adic and £2" is seen to be linear. This

allows for a simple correction to be made in oc for changes in €5".

127




ABe{e”)

2.0

1.6 |— ]
1.2 ]
0.8 | | | | 1 |
8 10 12 14 16 18 20 22
&2

Figure 8-17.

1.0

TEgp 8Be (£2") = Be (e2") - Be (62'.= 12) vs
We

E' for Various o -

0.6 |-

ac -

0.4¢

0.2

I I ! i

2.0

Figure 8-18.

we

* TEg] Attenuation vs Frequency for Various €.

Arrow Shows Lossless Cutoff.

128




10

Aac(e"z}

10 1 l
0.01 0.10

1.0 10.0

n

&2

Figure 8-19. TEg; f0c (€M) = dc (E5") - e (€," = 0) vs
€9" for Various Frequencies.

129




D, Comparison of Graphite and Ferrite for the Suppression
of Fundamental Oscillations

There are a number of combinations of the ferrite paramétérs
which would result in sufficient attenuation to suppress oscillation
of the fundamental mode. Proper choice is determined primarily by
the available materials. It 1s most important to make a correct

_choice of Hy, to determine the frequency of pesk attenuation. The
linewidth is also an important factor. Smaller AH yields highly
péaked attenuation while larger AH results in a wider, flatter spread.
Other parameters are siighfly less important. Smallest €' is desired
so that the shift in B is kept to a minimum, while highest £9" results

in more attenuation across the band. The magnetization affects both
the position and the magnitude of the peak attenuation. A larger
4T Mg results in a larger Oc which is shifted further away from tﬁe
frequency of peak n". After all of these choices are made to deter-
mine the proper shape and position of the attenuation curve, w should
be chosen so that oscillation could be ﬁrevented across the entire
frequency band.

Two properties make the use of a ferrite 1iﬁgr less

attrqctive thaﬁ a graphite liner for attenuating the fundamental

(TEgy) mode. First, a thicker sleevé of ferrite is required to

provide an equivelant amount of attenuation., For example, at a

we
frequency of ¢ = 3.35, Figure 8-~14 shows that a thickness of ferrite
of w = 0.027 is required to give ac = 0.92, while Figure 7-15 shows

that gc = 0.92 is produced by a graphite thickness of w = (.000008

(at " = 30,000). Thus, an equivelant ferrite is nearly 4,000 times




thicker. -A wider lossy layer might mo%e severely perturb the waveguide
fields, adversely affecting interaction.

Second, the thicklferrite layer causes a shift in the w —'8
plot not seen in the graphite case. This removes the beam line from
the waveguide mode line and reduces the fundamental interaction.

Thus, if a ferrite layer is to be used, the amplifier should be
redesigned so that the beam line would coincide with the shifted wave—
guide mode line.

A third property of the ferrite liner might prove either
helpful or detrimental, depending on the behaviér of the amplifier's"
lossless gain. If this gain is relatively flat across the band; the
sharply peaked frequency response of the ferritre attenuator would
result in an output that would be greater at the band edges than at
the center frequency. However, if the lossless gain is more bell
shaped, the attenuation would tend to smooth theAresulting output.

| The physical properties of the.ferrite material are also
an important consideration. When operated at high power levels the
ferrite experiences large differences in temperature. The large
temperature dependence of many of the ferrite.parameters-could cause
a.troublgsome variation in attenuation with the power levél used.,

E. Solution for the TEgy Mode

It was suggested earligr that a useful application of
frequency-dependent ferrite loss might lie in the attenuation of
higher-order modes. The peak of the attenuation curve can be placed
at the intersection of the TEyy waveguide modeland the s5=2 beam line

by selecting a proper value of Han. The attenuation at this frequency

131




should be sufficient to prevent second-order oscillations while the
attenuation at low frequencies will not adversely affect the TEpj
mode.

To investigate this possibility, a three—layer dielectric/

ferrite-loaded waveguide is considered. The waveguide is assumed to

AH
have the properties listed in Table 8-3 except that Hgy is chosen to

be 0.194 to give highest possible loss and the frequency of maximum

wce
"

W' is selected from Figure 8-13 to make the attenuation peak at g =

we '
4.82. 1t is found that peak attenuation occurs at ¢ = 4.82 when W'

. we . . Han
is made to peak at ¢ = 4.3. This necessitates a value of Hg; =

1

0.654. Figure 8-20 shows how the parameters W', H,', and W"

s ]_lal'l
vary with frequency under these conditiens.

The dispersion equation (A4.17) has been solved for the

a
TEgo mode using the conditions above and various values of w =77 - &

Figure.8—21 is a plot of the reéulting w—R diagram for w = 6.2 x
1072, As is usually seen to be the case, the w—B curve has shifted
to the right with the addition of loss. Figure 8-22 shows how the

attenuation behaves as a function of ffequency for two values of

' we
ferrite thickness. A peak in attenuation is very apparent near ¢ =

4,82, as predicted. A‘large amount of attenuation is also seen to
occur at higher frequencies, giving the curves an interesting saddle
shape. At lower frequencies, there is the usual rapid rise in oc
near lossless cutoff. The values of attenuation being reached in

these plots are much less than those achieved for the TEQ] case.
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However, they are comparable to those produced by grapﬁite. Figure
-7=-26 shows that a layer- of graphite with w = 6 x 1072 produces gc =
1.3 x 1072, For a similar layer of ferrite, dtc = 1.6 x 1072,

F. Comparison of Graphite and Ferrite for the Suppression of
TEpo Oscillations

Any amount of graphite that is used to attenuate the TEgy
mode will also affect the TEp] mode —- and to a greater extent,
Figure 7-17 shows that thicknesses of graphite only on the order of
w =2 x10"% can be used in the amplifier. Anything larger will have
an overly detrimental effect on the fundamental interaction. Figure
7-25 reveals that for €" = 30,000, w = 2 x 107% produces a 1Ey,
attenuation of only ae = 0.0005, This small value, coupled with the
fact that graphite must be applied in a pattern along just a portion
of the tube, seems to shed doubt on its value as a TEgop attenuator.

A ferrite does not have this limitation. If the attenuation
is centered on the TEpy/s=2 crossover, analysis shows that the TEyj
mode‘will not be.seriously attenuated. Figure 8-22 shows that a
thickness of w = 6.2 x 1072 gives a TE4, atteunuation as large as ac =
0.016. Even larger thicknesses can be used without adver§e attenuation
of the TEg) wave. Figure 8-23 shows a plot of TEgs attenuat%on vs
thickness. It is seen that oc rises very quickly as w is increased.
Thus, fairly large values of cc can probably be achieved without too
much widening of the ferrite liner. To determine exactly the necessary
‘value of dc to suppress oscillations, the amount of TEgpy interaction
needs to be known. As mentioned earlier, this has not been an

objective of this investigation.
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The use of a ferrite layer is not without its drawbacks,
however. Even though the TEp] mode is not overly attenuatgd by the
addition of the ferrite, its phase constant is affected. Adding such
~a thick layer of material with a dielectric comstant of 12 to 18
causes the TEgj w—PR plot to shift considerably to the right. The
thicker the layer, the larger the shift. Thus, if a ferrite is to be
used to attenuate the TEgy mode, the beam line must be adjusted to

compensate for this shift, or fundamental interaction will cease.
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IX. - CORCLUSLONS

This study dealt with two major tasks: 1) to find the effect of:
a lossy charge suppression layer on the propagation characteristics
of the dielectric-loaded waveguide slow~wave structure; 2) to determine
the amount and form of loss needed to suppress various parasitic
oscillations in an amplifier using the structure. To these ends,
three separate analyses were employed: a two-layer analysis, a three-
layer graphite analysis, and a three-layer ferrite amalysis. In each
case the proper dispersion relation was derived and solved for the
pnase and attenuation constants of the wave.

The three-layer graphite analysis determined that a graphite
layer used to suppress charge build-up in the dielectric liner must
be kept much less than a skin depth in thickness. A heavier layer
would result in an unacceptable amount of attenuation of the fundamental
mode. Since there exists a minimum depth of material which must be
applied, it was decided that pure graphite is too lossy to use for
this purpose. The effect of this layer on the phase constant of the
wave was also determined. I£ was found that a thickness of a hundredth
of a skin depth or so would cause only a negligible change in g.

The necessary thickness and conductivity of a lossy iayer used
to suppress‘oscillations of the fundamental mode was calculated by
the three-layer analysis. Both the three- and two-layer analyses
revealed that this loss would not affect the phase constant of the
wave to the extent of threatening fundamental interaction. The two-
layer analysis also showed that the shape of the radial component of

the rf field distributions remained fairly constant with the addition

of loss.
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A three-layer ferrite analysis was employed to determine the
feasibility of using a ferrite material as an atteﬁuator. It was
found that graphite is a better choice for attenuating the fundamental -
(TEp1) mode, while a ferrite would be well suited for attenuating
higher-~order modes where graphite is ineffective.

The peak of the frequency~dependent ferrite loss can be adjusted

to nearly any desired frequency, thus producing a very useful selective

loss.




Appendix 1: Derivation of the Three-Layer Dielectric-Loaded Waveguide
Dispersion Relation

The derivation in this appendix paterns that of Harrington [10}
who derives the two~layer nm = 0 form of the dispersion relation.

The three-layer dielectric-loaded waveguide is analyzed as an
infinitely long, circulat structure as shown in Figure Al-1. Three
separate dielectric regions, denoted by the subscfipts 1, 2, and 3
from innermost to outermost, are surrounded by a thin, perfectly
conducting metallic shell. The electromagnetic properties of region
i (i =1, 2, 3) are determined by the region's permeability, U;, and
its permittivity, £5-

The scalar wave functions for this structure must obey the scalar

Helmholz equation. Written in the cylindrical coordinate system of

Figure Al-2, this is:

13 aw) 1 32y 22y |
- |+ + + kU= 0 (Al.1)
o Bp (pap 02 342 T 3,2 v

where: o= séalar wave function
p = radial variable
¢ = azimuthal variable
z = axial variable
k = propagation constént

The standard method for solving equation (Al.1) uses the separation

of ‘variables., This suggests a solution of the form:

P =R {p) ¢ ($) 2 {=2). (Al.2)




PERFECT
CONBUCTOR

REGION 1: REGION 2: REGION 3:
i & My & Ug, €3

Figure Al-1. 1Infinitely Long Three-Layer Dielectric-Loaded
Waveguide. '

Figure Al-2.  Cylindrical Coordinate System Used in Analyzing
the Three-Layer Waveguide,
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Upon substitution of (Al.2) and division by ¥, (Al.1) becomes:

+ k2 = 0. (A1.3)

2 2

1 4 G)QB) + L 47 ¢ . d. %
PR aP \ 4dp P2o q¢2 z 422
The third term of (Al.3) is independent of ¢ and z and so must be

équal to a constant if the equation is to hold for all z. Thus:

2
L&z - 42 (A1.4)
7 d z?
Substituting (Al.4) into (Al.3) and multiplying by'p2 gives:
2
RL(d—R)a-ld@ + &2 -k, 0?2 = . (a1.5)
R dp \"gp ¢ g 92 .
Sinceithe second term of (Al.5) is independent of 0 and z, let
)
1470 _ 2 (41.6)
® 4 ¢2
Now, defining kp by:
2 2 _ 2
koo o+ k5= k5, (A1.7)
and substituting it into (Al.5) results in the set of separated
equations:
o ( .QB) t [kyp) - a2l =0 (A1.8)
de dp
a? ¢ 2
— + n° $ =0 (A1.9)
d ¢2
d? z 2 -
+k,”z = 0" (A1.10)
2
d z .

Equations (A1.9) and (A1.10) have simple solutions of harmonic functions.
Equation (Al1.8) is more complex. It is known as Bessel's equation of
order n and argument kpp. SBolutions to Bessel's equation will bé
written in general as:

R = B, (kpp ). (Al.11)
Common functions used for B, (kpp) are: J, (kpp), the Bessel function

of the first kind; Y, (kpp), the Bessel function of the second kind;
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Hn(l)-(kpp), the Hankel function of the first kind; and-anz) (kpp),
the Hankel function of the second kind. Since the Hankel functioms
can be written as chplex combinations of Y, and J,, any two of the
above four functions can be taken as linearly independent solutions

to (AL.8). The simplest choice is J, and Y,, so let:

B, (kpo) =01 Jy (kyP) + Cy ¥y (}cpo). (Al.12)
Solutions to (Al.9) and (Al.10) cau be written as:
7 (z) = e 1¥5% |  (Al.13)
¢ ($d) = cos (n$) for T waves (A1,14)
o (¢) = sin (n¢) for TE waves | (A1.15)

arnd, from equation (Al.2), the scalar wave functions are written as:
T (x o)
v, oP

P° (kpp)

Cy Bnm (kpp) cos (ng¢) e"3¥22 for ™ waves (A1.18)

H

Cqy Bne (kpp) sin (n¢) e"IKz2 for TE wavesr
where ¢;, C; are constants.

Equation (Al.7) can be written in each of the dielectric regioms:

S 2 2 _ 2 _ 2
. kppm vk, T Ky weH g
2 7 _ 2 _ 2
1 kpp® + k5 = k0 = 0ty e (A1.17)
2 2. _ 2 _ 2 '
kp3 + kZ = k3 - (.U UB 83

where w is the wave's radian frequency.

Thus, -the scalar wave function can be written in each region-as:

Wﬁml (kpi£D A Bnml (kplp) cos (n?) e ik 2z

el
n

C Bnmz (kpzp) cos (n®) e”ikzZ

0

WHE1 (kplFﬂ B B (kplp) sin (n$) e ik,

2
Ve (kpy @) (A1.18)

V.82 (kyp® = D B.%% (k,P) sin (af) e"I%z2

1]

wnt (k3P = E Bnt-(kDBO) cos (nd) e ¥KzZ

"

V% (k3 = F 8,83 (k40) sin (a®) e Tkz2

where A, B, C, D, E, F are constants.
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Here the solutions to Bessel's equation in each of the three regions

are given by (Al.12) as:
A Bnml (kplo) = Ay T, (kyyP) + A, ¥ (kplp)
BB, (kP = B I (k,1P) + By ¥ (ky 0)
¢ 3™ (kpp® = 0y Iy CeppP) + Gy Y (e (41 g
D Bne2 (kp? = Dy I, (kpzp) + Dz ¥, (kgD
E B ™ (k3@ = Ey I (k3P) + By ¥ (k50)
FB, (k3P = Fp 3 (k30) + Fy ¥, (kogP)

Since region ! contains the point P = 0 and Y, (0} is not defined,
the constants A and By must be zero.

To derive the dispersion relation, it is necessary to know the
electric and magnetic fields in each dielectric region. The partial

fields can be obtained from the scalar wave function, {, by:

E = 32 Pm _— 1 ypm
g jwe  3p 3z p o oy
2 .m m
go= L. 27V g o= -Z (A1.20)
juep 3¢ dz J ap
-1 52 2 _
Ep = — (_—2 +k>w‘“ H, =0
Jwe 3z
for ™ waves, and by:
1 oy® 1 32 ye
E = — H = r——— o
P p 30 O o Fp o=
: e. 2 e
Eg= Hy =+ ¥ (al.21)
ap _ jwpe  Od oz
: 2
g, - o, = 2 (82+k2>¢e
Juy \9dz

For TE waves. The total electric and magnetic field in each region

is given by the sum of the TE and TM fields in that region. Except
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for-the special case of n = {, there will always be contributions
from both TE and TM components. This leads to the propagation of
hybrid modes, which are not purely TE or TM.

The important field components are those which will bé used to
impose the boundary conditions. These fields in region i {where i =
1, 2, 3) are found to be:

k.2

X —jk Z
" P ei . z
H, =0 + . KB (kpip) sin (n¢) e
Jwpyg _
kpiz : ~Jk,z
E, = K B ™ (kpip) cos (ng) e + 0
Jwei
. -ik,z
- = THL .
Ho = kpi K B (kpip) cos {(nd) e
ak,, _ ~jk,z (A1.22)
ei
ol KB, (kpip) cos (np) e
i
nk . —jk,z
E¢ = wgzp K B,™ (kp:p) sin (ng) e
i
—jkzz

+ koo K BHEi' (kp;0) sin (nd) e
where: K = appropriate constant from (Al.19).

The boundary conditions require that the field components Hy, E,, Hy,

and Eg be continuous at p = a and at 0 = b, At p= ¢ the fields

impinge on a perfect conductor so E, and E¢ must vanish. Equating
these field components across the boundary and at the walls will

yield ten simultaneous equations in the ten unknown constants, Aj,
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B1, €1, C2, Dy, Dy, Ej, Ep, ¥y, and Fp. Using the boundary condition

at p = ¢ to eliminate Ey and Fy gives a system of eight equations:

2 2 .
ol 02 g, (kg 92)] = 0
1. —— By J, (kpla) - — [1:)1 I, (kpza) + Dy Y (kpyadl-=
My My
oy il (kg1 = 0
2. Ay I (kpa) - () Jq (kppa) + Gy ¥, (kppadl =
€ €9
3. k., A, J' (k )—nszJ(k ) + kny (G J7 (k.oa) +
. pl 21 Yn pl@ 1 Yn ‘%p12 o2 %1 Yp p23
WHya
(A1.23)
, nk, .
(U}Jza
nk, . nk, :
4, Ay Jp Gepa) + kg By I (kppa) - [c) I, (kppa) +
U..\Ela UJEZ&
Ca Yn (kpgal)]l - kpg [Dy J' (kpga) + Dy ¥," (kpga)]l = 0
kpéz . kp32
5. —/— [Dl I, (kpzb) +Dy Y, (kpzb)] -~ ——F [Jn (kp3b) -
Hqy g :
Jn' (kp3C)
2 2
ko kps3 ( )
€9 3
.In '(kp3C)
Y, (kpgb) ——— 1 =0
Y, (kp3C)
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7o wkpy 1€ Jp' (kpeb) + €, Y ' (kyyb)] - [Dy J, (kpyb) +

WHa b
i T - ] :
nk, Jn' (kp3e)
Fy 13, (ky3b) = Y (kyqb) - l1=0
1 3 3
wH3b voe noP Yo' (kpje)
ok, :
1
8. [C) Ty (k gb) + Cy Y (kppb)] + kpy [D) I (kpob) + D, ¥
UJ€2b
nk, Ja (kp30)
(kypb)] - By [Jg (kp3b) = ¥, (kp3b) ———eee ] = kg Fy
© WE b B noe ¥, (kp3e)d °
Jn‘ (kpBC)
(35" (kpgb) = ¥ " (kpgb) —— ] =0,
Yl’l' (kp_?,c—)

Since all of these equations are equal to zero the only non—trivial
solution will occur when the determinant of the coefficient matrix is
zero. The equatibn which results from this condition is called the
dispersion relation. This equation describes the relationship between
ws the radian frequency of the wave, and k,, the axial propagation
constant, which insures non-zero fields in the waveguide.

For compactness let:

Uy .= Jp (kppa) ' = J,' (kpra)

U = Jp (kppa) Up' = Jp" (kppa)

Uz = Y, (kppa) U3' = ¥," (kppa)

Uy = Jy (kpgb) Uy' = Jn" (kppb) (Al.24)
Us = Yy (kppb)  Us' = ¥p' (kpph)
U = I (kp3b) Ug' = Jo' (kp3b)

Uy = ¥, (kpab) U7' = ¥5' (kp3b)

Ug = J, (kpac) Ug' = J," (kpze)

Ug = ¥, (kpgc) Ug' = ¥,' (kpjc).




Then, the determinant of equation (Al.25) provides the dispersion

relation. The columns in the determinant marked TE arise from the TE

contributions of the fields, and those marked TM come from the T
contributions. This determinant can be evaluated either numerically,

by computer, or algebraically.
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The latter method yields an actual equation for the dispersion relation

and shall be carried out here.

To make the calculation of the determinant simpler, the system

of eight equations can be reduced o a system of four equations by

the elimination of Aj, By, Ej, and Fj. Carrying this through yields

the four by four determinant:

kpy [Up'=G, Uyl

nk .,
U, K
o 4 53
where: . Gy
G3

kpg [U3'-€, 03]

ok,

Ua K
sza 371

kpg [U5'-G, Us]

nkz
U, K
wiga 2 1
kgy (UG Uy]
ok,
U, K
b 4 53
kg9 {U4'—Gl U4]
kpy €3 f2
G —
2
kp3 €9 £
kpz € Uy'
G -—
A
kpy €2 Uy
- U7 Ug
- U;' Ug
- Uy Ug'
- U7' U8’
2
. . kpo
3  Z
03
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nk,

Uy K
wiga 3 1

kpg [U3'-G U3l

nk,

Whsb

(Al1.26)




This determinant can be evaluated very simply by expanding in minors.
In schematic form, this is written as:

A B C D
E F G. H

I J K Ll =

M N o0 p

= (AF-EB) (KP-OL) + (EC-AG) (JP-LN) + (AH-ED) (JO-NK) (A1.27)
+ (MJ-IN) (GD-HC) + (IO-MK) (FD-HB) + (ML-TP) (FG-GB).
Carrying out the multiplications, grouping terms, and using the

identity.

2
Jn+1 x) ¥p (%) - Jy (%) Y4y (2) = 7% (A1.28)

yields the explicit form of the dispersion relation:

2 2 _ 2 2
P okg3™ k" - kg | 3 kpp
2 Kot py 7Kgy | b kp3
o1~ kp2 i kpz ab

= {63 (61 £5 — £7) ~ (6] €5 - £8)] [G4 (Gy f5 - £7) - (Gz_f6 - fg)]

TE ) ™
2 2 2 2 2 2
n” &, (epa® = kg1 ™) (kg = kp3™)
where: M= 7 5 5 7
uy UZ Ezab le kpz kp3
fg = U4 U3 - Uy Ug
fg = Uy U3' - Uy' Us
£y = U4' Uz - Usp Us'

fg = U4' U3' - Uy' Us'




A very useful property of equation (A1.29) is that all of its terms
involve dimensionless ratios. This forgoes any worries about units
when evaluaéing the dispersion relation.

A very special case of (A1.29) occurs when n = 0. In this case
the entire left-hand side of the equation becomes zero and the right—
hand side separates into a pair of solutions representing pure TE and
™ modes. This can be seen to be true by considering determinant
(Al.ﬁS). If the waveguide is propagating a pure TE mode all the

field components due to the T partial fields must be zero. Thus,

{A1.25) becomes:

2 2 2
ko1 kgp Koy
—- U - —1, = - Uy 0
Hy Ha )
kep Ut - kpz Uy' ~ kpp Uj' 0 o
2 ' o2 2 .
ko Ky kg3 ‘ Ug {A1.30)
Uo H2 3 Ug'
.Ug'
0 kpg Uy ko Us' = kp3 I%s' - Uy G*T}
9

Carryiag out the multiplication according to equation (A1.27) yields:

, Epz MUyt kpy M3 £y !
Ch ket Mo Uq K $ o Uy £ sl
1 H2 Uy p3 Mg £3
g g (Al,31)
kpg My Up! : kpy My £y 1
+ - _..__.H__‘ ~ UB + U3 - —_— U4 + UL]. = 0,
kpp Mo U kp3 Hy f£3

or:
(G3 Uy - Up") (Us' - G Us) +(U3' - Gy U3) (Ug' - G Ug) =0, (Al.32)
which is rvearranged to:

Ie3 (61 f5 ~ £7) - (61 fg - £g5)] = 0. (41.33)
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This is simply the first multiplying term on the right-hand side of
the three-layer dispersion equation (A1.29). A similar consideration

of pure TM fields ledds to the second multiplying term.




Appendix 2.  Derivation of the Two-Layer Dispersion Relation as a
Simplification of the Three-Layer Dispersion Relation

The two-layer dielectric—loadeﬁ.waveguide dispersion relation
can be derivéd from either the boundary-value problem, as in'Appeﬁdix‘
One, or as a limiting case of the three-layer problem. The latter is
much simpler and can be accomplished by allowing the thickness of tﬁe
middle layer to go to zero while kpy goes to kpj. This transformstion

is shown in Figure A2-1. Under these conditions the following

relations result:

®p1, kpy —=Kpa a, b—=A
kp3 -——-—kpB ¢ —=3
(a2.1)
“, Bp——=Fy His Hp—Hy
€3 —=%3 My My
Using thése will yield:
Up, Ug, Uy ———= T (kppd) = Uy
Uy, Us —— =Y, (kppA) = U3
Ug ——=Jp (kopd) = Tg (42.2)
Uy =¥, (kopd) = Ty
Ug ——=J; (kopB) = Ug
Ug ———=Y, (kpgB) = Tg
Thus:
fl——l—’fv]_ = ﬂ:6 ﬁg - ﬁ-; ﬁg
fg —=fy = Ve' Ug - Ty’ Ug
fq ——-—-—Ffu3 = Tg ﬁg' —ﬁ7 Ug'
£, —=f;, = Ug' Tg' - Ty' Ug' (A2.3)




Figure A2-1. Transformation of the Three-Layer Waveguide to
the Two-lLayer Waveguide.
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fS—“"-fs = 3433“33’&4 = {

fo—=1fg = T, U3' - U3 Ty (A2:3)
f-]————']“f} = TJ’Z;' 53 - ﬁ:}' 'ﬁ4 = - E& (Cont"d)
fg ——»Eg = T," Ug' - U3' T,' = o,
and:
- kps kB f4
LI T F.
oB Ha 13
- koa €8 £
G2 -——1-G2 = -
kop €4 f)
-~ (A2.4)
- '
S /A o
G4—'-"G4 = -ﬁ;— = G3 .

With (A2.2), equation (Al.29) reduces to:

(42.5)
= (63 (1 £5 - £7) ~ (G Fg - Fg)1 (34 @y F5 - ) - (@ Fg -Eg)1.
Substituting (A2.3) and (A2.4) into (A2.5) yields the two-layer

- dielectric-loaded waveguide dipsersion relation:

TE
2 2 2,2

i 2 7 A =
W My £4A Koy - kpg Ha I, (kpAA)

kpA Mg £, _ N (kpAA)

kop € f2 Jn' (kppd)
- - i . (A2.6)

kpB €4 E‘l N (kpAA)




As with equation (Al

dimensions.

When n = 0, the

pure TE and TM nodes.

propagation, and the

.29), all terms in (A2.6) involve ratios of. like

right-hand side of equation (42.6) splits into
The first multiplying term describes TE mode

second term describes TM progagation.
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Appendix 3. Derivation of the Two-Layer Waveguide Field Values

To derive the values of the electric and magnetic fields for the.

case of the two-layer dielectric-loaded waveguide, it is necessary to

set up the boundary-value matrix as was done for the three-layer case
in Appendix One. TFor the structure of Figure A3-1, remembefing that
the outer wall is considered a perfect conductor, the scalar wave

functions can be written as:

] =jkgz
P = Ay 3, (kplﬂ) cos (nd) e
—ik,z
el =8, 3. Gy ) sin (ad) e . | (43.1)
2 Jn (kQZb) ~jk,z
Y=y I, (kpe ) - ¥ (kpyP) | cos (np) e
Jn' (kpzb)_ ’ ~jkzz
V= 1 (ky® - Ty (ko) sin (ag) e
1 n p2 ; n o2 .
. . Y, (kpzb)
Letting:
Up = Jp (kpra) fl =U3 Uy -TUp Us
Up = J, (kpza) fo =U3"' Uy - Uy’ Usg
Uz = ¥, (kppa) f3 = U3 U,' - Uy Usg' (a3.2)
Uy = Jn (kpgb) fr, = Us' Ug' = Uyp' Us"

'U5.= Yn (kp2b)

and applying the boundary conditions at O = a results in the matrix:

B 2 _ 2 ]
Koy Kpg Uy :
0 —0u; 0 Uz = =03 A
51 Uz Us»
)
ki1 ~kpa Uy
= Ul Q0 = U2 ippe— U3 o] Bl
I 2 U5 4]
1o
-nk U nk u," = o
z 4 z 4
“k,, Uy' U kpo U, = — U," U, - — U c 0
p1 Uy wipa 1 o2 [ 2 T 3} Giga [ 27 gy 4 1
nk, -nk U Uy
- k Z o —_4.113 ~kp U"—_in3'] D,
wepa Pl wega § 2 . 272 A
5
(a3.3)
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PERFECT

CONDUCTOR

Figure A3-1.

REGION 2;u2, £,

REGION 1; Uy €4

Infinitely Long Two-Layer Dielectric~Loaded
Waveguide and Cylindrical Coordinate System,
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Solving for B}, Cj, and Dy iw terms of Al yields:

2
Cy €y k1™ Uy Us .
= - 5 (A3.4)
A €1 Kpo £y
Up' kpp gy £y
Bl nkz Ul kpy €1 ) .
= , (43.5)
7
Koy
Dy By C1 By ¥
= __ X (A3.6)

AL A A WG
Substituting (A3.1) into (A1.20) and (Al1.21) and using (A3.4), (A3.5),
and (A3.6) allows explicit formulas to be written for the fields in

each region. Here, A] remains a constant which can be determined

knowing the power in the guide. Thus:

REGION ONE

Bl :
Let: Ry = K—‘(from equation (A3.5)) (A3.7)
1
—kz kpy n ' ~ik,z
= — 1
E, Ay LT I (kpp) + Ry 5 Jn (kpyP)) cos (n¢’)_ e
[0k, 7 ‘ —jk,z
Ecb = Al L(,U_Elb_ Jn (kplp) + RI kp]. J'ﬂ' (kplp) Sin (n¢) e
kplz —jkzz
E, = A - I, (kplp) cos {(ng) e (A3.8)
Jue] : '
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H(i) = _A].
Hz = Al
REGICN TWO
Let:
fpl
fpp =
fp3 =
Epg
ED = _Al
E¢ = Al
Ez = Al
H¢ = “Al

joug U5’

-jk,z

n ky kKpp
' a
[?; I, (kplp) + Ry _mﬁf__ J, (kplp) sin (n¢) e
: nk, ( —ikzz
kpl Jn (kplp) + R]. _U.)—ﬁl—d- J'ﬂ (kplp) cOs nql) e
ko -k, z , (43.8)
. Ry I, (kplp) sin {n¢) e : (Cont'd}
Jupy
Cy
R, = e (from equation (A3.4}) (A3.9)
1 :
Dy
Ry = v (from equation (A3,6)) {A3.10)
1
= Jy (kpoP) Yy (kppb) - J, (kpob) Y, (kpgP)
Jn (kpap) ' (kpob) = Ju' (kgob) Yo (kpop)
) (A3.11)
Jn' (kp20) Yy (kpob) ~ I, (kpob) Yo" (kpoe)
= Tp' (kp20) Yo' (kpgb) - J.' (kpob) Y,' (kpoP)
kZ kp2 fp3 n fp2 —jkzz
9 —— — * Ry — —— 1 cos (n¢) e
Wy  Us b Us
'hkz fo1 fos (n) ~ik,z
Ry —— 4+ R, k —— tsin (nd) e
050 2w 3 %02 5
b 2 ) wl
k f =ik _z
1 J
‘pz R, ° cos (np) e -
Jjwey " Us (A3.12)
~ n fp ky kps  fpg ~-jkzz
Ry — — + B3 ——— —— | sin (nd) e
L © p Us Wiy Us' ,
- pr nkz fpz ] —jkzz
koo Ry o + . —— | cos (ad) e
B P2 72 Usg Wlap Us' |
Kool £ ~ik_z
02 P2 3Ky
R4 —— sin (n9¢) e




The TEgp fields can be found by letting n = 0 in equations
(A3.12). 1In this case the fields will have no azimuthal variations.

They are given by:

REGION ONE
Ep =0 E, =0 H¢ = Q
k‘Z kpl ' —jkzz
(A3.13)
. -jkz,
Ey = A1 Rp kp) Jo' (ky1p) e
. kplz ""jkzz -
H, = -jA Ry EﬂI— Jo (kpip) e
REGION TWO
Ep =0 E; =0 H¢ = 0
kg, kpz fp4 —jkzz
Hy = -A R
P i G, 3 Us'
(A3.14)
fp,_q_ "jkzz
By = Apkpy Ry ToT
2 .
_ ey kpg" fpp  Tik,z

Wy Us"

Equations (A3.13) and (A3.14) camn be put in a much simpler form
by making them dimensionally normalized. The simplest way to normalize
the fields is to define the H, magnetic field component to be one on
the axis. This yields a normalizing factor of:

Jwi ik,z
e s (A3.15)

7
A Ry kpyy

which will multiply all of the field components to give their normalized

counterparts.
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The value of R3 from equation (A3.10) can be found by writing:

Dg By D D]
R3 = .= e = Rl N (A3.16)
A1 Al By Bl
Letting n = 0 in the fourth equation of (A3.3) yields:
Dy kp1 Us' Uy’ -
— = . - (A3,17)
By ko2 4

Substituting (A3.16) and (A3.17) into equations (A3.13) and (A3.14)

and multiplying by (A3.15) gives the normalized TEgm field components:

REGION ONE
B, =0 g, =0 Hy =0
ﬁz = JO (kglp)
A~ kZ
HD = -j — JO' (kplp) (A3.18)
kol
W b
~ C
ol
REGICN TWO
ED =0 %Z =0 ﬁq) =0
Ul k 9 £ - )
~ o} g2
B, = — " Jo' (kya) (43.19)
z Uy kpq 9 -
~ Uy ky ( ) foq
Hp = - Jo kaqa) ——
Ha kpi k1 £s
O ]
-~ p4
Eg i g ng Jo' (kpla) —_
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Yo

h : =
where Mo =
‘0
H1
H1R -
= o

1n the above equations; a hat ("~") indicates & normalized field

c omponent .




Appendix 4: Derivation of the Three-Layer Dispersion Equation with
a Ferrite Layer

The three~layer dielectric/ferrite-loaded wavégﬁide is analyzed
as an infinitely long, circular structure as shown in Figure Ai—l.
The first and third vegions are dielectric in nature and can be
described by their scalar permeability, uj or ujz, and by their scalar
permittivity, €) or £3. The second region is composed of a ferrite
material which is described by a temsor permeability, Mg ﬁ;} and a
scalar permittivity, Eg %. Surrounding these three 1ayérs is a
perfectly conducting, metallic shell.

The expressions for the field components in regions one and
three can be obtained in the same manner as that used in Appendix
One. The fields in thé ferrite region are obtained similarly, and by

considering region two to exhibit the tensor permeability:

M J Hy 0

- .

Wy = -i Hy il 0 . (a4.1)
0 0 H11

and, thus, to have the vector fields:

> <>

By = {g L2 Hp (A4.2)
> > )

Dy = Eg &2 B2

As with the scalar wave Ffunctions in the dielectric regions,
those in the ferrite regiom must obey the Helmholz equatioun:

1 1 2 2

,_i (p%)+ R v, )(1,22 Py=0 (A4.3)
2 .

p 8P op
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which is written in the cylindrical coordinate system of Figure Al-2-
Using the method of separation of variables as in Apbendix One, ¢ can

be written as:

ng —jkyz
o= [Cy Iy (X1,2P) + Cg Y (X1,2P)] e e . (AL.4)

Curevich [9] has shown that the fields in the ferrite region can be

found from the relations:

1
Ep=JS§l_P_ +T,_ai
ap p o¢
1
E¢="T.3£.+JS_.3_I£
9p p ¢
- g Y | (A4S
B, = 3 W : .5)
2 1 2
HD=JM3‘P+N_34’
dpdz p 8¢9z
2 2
34 1%y
H, = -N + 7 M _ _
¢ 9p 0z J 0 ooz
2
.y
H =3 R
z ] dz2

where 8, T, W, M, N, and R are differential operators arrising from
' + . L
the fact that u; is a temsor quantity. TFor the tensor of (a5.1),

Curevich derives these factors to be:

w? 2 2
Ty,2 © o) g ML — kT T K2
ua
_ 2
S - -u— kz
Ua )
- 2 ' .
Wl,2 = S X1,2° . {AL.6)
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1 w2 '
= 2 2
Ml,Z ( ) (_E' Eg H - k.= - X1 .2 ) (a4.86)

w 3
L) \e (Cont'd.)
C
Ha
N = iu. €9 —-
c m
2
- Ty,2 X1,2
1:2 T w 2
g Mk
w2
where: U, = HU- ST (A4.7)

He also finds the separation relation between the axial propagatiom

constant, k,, and the radial propagation constant, Xl,z, to be:

2

1 W U
Xl 22 = —_— (U_,L + Ull) - (1 + —_ ) k 2
’ 2 |2 H
\/l o 2 ¢ . ru
NN A B - ) - (1 - ———J k + % “ €, Uy —. (AL.B)
Nolm 2t 11 n z g 2 11 7

It is noted that if W = ly] and H, = 0, the tensor ¥y reduces to a

scalar, Uy = U, and equation (A4.8) becomes:

w bt 2 = 2 = 2 -
X127 = — ¥y & -k, Xq hou (44.9)

and the case reduces to the three-layer dielectric case considered im
Appendix One.

In the ferrite region, the Helmolz equation (A4.3) is solved
using the function P of (A4.4). This solution holds for ¥ using
either ¥x) ar X2. Thus, V¥ must be written in region two as:

Wy = [Cp I, Oyl + Cy I, (%P + Dy Y (XyP) + Dy ¥ (xyP)]
-ikzz  jn¢

e e . : | (A4.10)
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or:

'jkzz jn¢
Vs = [C1 Jy OP) + D Y, (X1 M] e e + [Cy I, (X1P) +
-ikyz nd (a4.11)
Dy Y, (X90)] e e . '

The field components in region one are found from (A1.19), (A1.20),

and (Al.21) to be:

2
B,y = kpy” [Ap I, (kpyP)]

nk,
= 3 %)
E¢17 ] ulR —C— le [B]. Jn' (kplp)] + T {Al Jn (kplp)]

) (44.12)
Byy = kpy® [By Ty (kpy9)
nkzz
P
~jkz in¢ ] sin (n¢) .
where they vary with e e not with .o¢ (n¢)/- In region two,

the field components are found from (A4.5) and (A4.11) to be:

Epa = ky Wy 16] 35 (X1P) + Dy Y (X1P)] + kg Wy [Cp J4 (X20) +
Dy Y, (Xgp)]

Egz =~T1 )1 [C1 Jo" Oa @) + Dy Yo' @] - Ty Xp (63 Jp' (KzP) +
Dy Y,' (X2P)]

n n :
=81 5 IC) 3y (X1P) + Dy ¥y (X1P)] = 85 5 [Cg Ty (XoP) +
Dy ¥, (X2P)] ]

e iy 2 Coig 2 L
Hyp == %, Ry [0 3, (@ + Dy ¥ ()] = § k,° Ry [Cy Ty (XpP) +
Dy Y, (szfj

Hopo = J k, W X [Cy J5" (X3P) + Dy Y,' OGP + § k; N X [Cp Iy
(X2 P + Dy Y,' (X20)]

nkz I'lk.z
+ 3 _7;.M1 ey 3, &yed + Dy ¥ (xy00] + 3§ —ET-MZ [Cy I, Gpp) +

Dy Y. {x2p)].
2 'n X2 (84.13)
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In region three, the field components are:
- .2
"B,z = kp3" [Ep T, (kg P) + By Y (kgyP)]

. nk
_ . 03 t 3 z :
E¢3 = 1 Usp —6 kp3 [Fl Jn (kp3p) + F2 1’1' (kp3p )+ e [El Jn

(kggP) + Ey Y (kpqP)l
H,g = kpg? [F] J_ (kpP) + Fy Y (kgqP)] ” (A4.14)

ok,
S . W
Hgy = -Tr-[Fl I, (kpaP) + Fy Y (kpaP)] -j E3R-E kpy [Eq 3.

(kp3p) + Ey Y, (ko330

-jk,z jn¢
Here all fields vary with e e . Applying the bounddry conditions

at p = a, p=bh, and 0 = ¢ as in Appendix One yields a set of eight
simultaneous equations in the eight unknowns Ay, By, Cj, Cy, Dy, Do,
Ej, and Fj. A non-trivial solution is guarantee& by setting the
determinant of the coefficient matrix to zero. The resulting equation

yields the dispersion relation for the waveguide, relating & and k,.

Letting: .
vy = Jy (kg a) , vi' = Jp' (kpya)
Vy = J, (x1a) | Vo' =3, (Xlaj
V3 = Y (x12) v3' =Y, (X1a)
Vg = Iy (x2a) Vy' = Jy' (Xga)
Vs = Y, (xga) st =Y (ga)
Vg = Jy (X1b) Vo' = J,' (x1b)
vy = Y, (X1b) v7' = ¥," (1b)
Vg = J, (x9b) vg' = Jdg" (x2b)
Vg = ¥, (X2b) vg' = Yn' (X2b)
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Vio = Jn (kp3b) Vig" = Ju' (kp3b)

Vi1 = Y (kp3b) Vi1' = ¥y (kp3b)

Vig = Jp (kp3e) Vip' = J," (kpze)

Vi3 = ¥, (kp3e) Vi3' = Y, (kp3e)

g1 = Vip Vi3 ~ Vi1 V12

g2 = Vig' Vi3 - Vi1' V12

g3 = Vio V13' - Vi1 V12’ | (A4.15)

T

gy = Vio' V13' - Vi1’ Vi2's
the determinant (A4.16) results. This is a very complicated determinant.
In this form it is best evaluated on a computer,

A much simpler case to'analyze is that for which n = 0. Putting
n =0 into (A4.16), substituting in equations (A4.6) and eliminating
A1, By, Ej, and Fj yields the much simpler determinant:
Vo'-Hy Vo Vg '-Hy Vi V3'-H] V3 AV5'-H2 Vs
Ty [V'-1) Va1 T [V4'-Ip V4l Ty [V3'-I3 V3] Ty [V5'-Iz V5] =g

VG'—H3 Vg VS'-H4 Vg V7'—H3 V7 Vg'—H4 Vg

T, [Vﬁ'*I3 V6] Ty [Vg'—14 Vg] T [V7'-I3 V7] Ts [Vg'“14 Vg] (A4,17)

€1 X1,2 V1’
where: HI 7 =
g €2 ko1 V1
. M1 X1,2 V1'
| I o a—— _
’ Bl kp1 V1 (A4.18)
. €3 X1,2 £2
3 =
4 T ko3 81
H3 X1,2 84
I =
3,4
: U1l kp3 83
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This determinant is very easy to handle. All of its entries are
dimensionless quantities, the I's and H's being ratios of like units.

It can be evaluated wvery simply by usiﬁg equation (A1.27).
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Appendix 5. Methods of Numerical Solution

A. Lossless Two-Layer Dispersion Solution

In the absence of loss, the two-layer dispersion equation.
is a function of a real variable, A variety of metﬁods are available
for solving such functions. Because of the complicated behavior of
the Bessel functions, the very simple method of halving the interval
was chosen. Although convergence is not very rapid, it avoids the
pitfalls of more complicated techniques. It is not prone to divergence
and no derivative neea be calculated. The Bessel functions are
calculated in a subroutine which uses the infinite series representation
for small arguments and an asymptotic expansion  for an argumént larger
than thirty,

A numerical problem is encountered when the phase velocity
of the wave is less than the speed of light. In this frequency region
kpz is negative and the arguments of the Be;sel functions are imaginary.

The dispersion equation must then be recalculated using the relations

2 ,
Jo (GG 2) = 5" 1(2) and Y, (§ 2) = ™ 1 (2) -7 PR (2). Sub-
stitution of these into the dispersion relation results in a new
equation for this region, which is still a real function of a real
variable.

The algorithin developed for this problem can be used in

wb
two ways. Given a value of k,b, it will step up through c » solving

wh
for the first m roots at a desired n, At a given ¢ the program will

step through k,b, solving for the first m roots at a desired n.

174




B.’ Lossy Dielectric Dispersion Solution

Each of the three lossy dielectric problems are solved in
a similar maoner. The presence of loss makes each dispersion equation
a function of a complex variable (a result of the complex dielectric
constant or permeability tensor). The Bessel functions will thus
have arguments which are complex. These are calculated in much the
same way as the real Bessel functions. 1f the magnitudé of the
argument 1s amall, an infinite series of complex terms is used. If
the magnitude of the arguﬁent js greater than thirty, 2 complex
assymptotic expansion is used.

gince the dispersion equation 1s a function of a complex

variable, its mimerical solution will involve cqnvergence in two
dimensions. The routine chosen uses Muller's technique with deflation
to eliminate prviously obtained roots. The convergence of this method
can be either very fast or very slow, depending on the behavior of
the functibn.near the root. The quickly varying nétﬁre of the Beséel
functions makes it necessary to begin with a seed value quite near

the actual root. Also, the dispersion equation must be amalytic in

‘the region containing both the root and the initial guess.

The algofithm developed for the solution of ‘the lossy
problem starts at a given frequéncy and inpudts an initial seed value
of k,. Upon converging to the actual root, the program increments
the frequency and projects ahead to the next seed value by linear
interpolation. Thus, the routine follows along the mode iine of

interest.
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AThe program can also be adapted to increment the thickness
of the lossy layer rather than the frequency. Starting from the
lossless case the layer is slowly increased from zero until the .
desired value of thickness is reached. This allows the mode line aﬁd
attenuation to be monitored as it is perturbed from the losslesé case.

In the two-layer lossy problem only the first methqd was
used, In_each of the three—layer cases, both methods were used to

provide an added check. Results from each were in agreement.
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a, b, c:

Bo:

Kyons Koeol:
Kae02s Xge0l:
kp!

‘kZ:

List of Symbols

Signal amplitude

Waveguide dimensions

External magnetic field in the waveguide
Speed of light in a vacuum

Waveguide electric field components
Electronic charge

Wave frequency

Various combinations of Bessel functions
Amplifier gain

Waveguide magnetic field components
Ferrite resonant magnetic field

Ferrite anisotropy field

Bo
External magnetic field in the waveguide = 5

Amplifier Beam current

\‘ _l.

Constants relating odc or Bc and€"
Constants relating Gc and €" -
Radial propagation constant

Axial propégation coustant =f- jo
Cold circuit loss

Forward warm circuit loss

Reverse warm circuit loss

Length of the amplifier loss pattern
Waveguide mode designators

Electron rest mass
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-

Yo!
Aot
AR

AH:

List of Symbols (Continued)

Ferrite demégnetizing shape factors

Ferrite loss factors

Electron orbit guiding center radius
Input tefleétion coefficient

Output Reflection Coefficient

Larmor radius

Cyclotronrharmonic number

Time Variable

Shorthand notafion for various Bessel functions
Amplifier beam potential

Wave phase velocity

Electron axial velocity

Radial electron veloeity

Azimuthal electron veldcity

b a
Lossy layer thickness = - ¢

c
Axial wvariable

Territe magnetization

Wave attenuation constant

- Wave phase constant

Gyromagnetic ratio
Relativistic beam parameter
Change in attenuation constant
Change in phase coﬁstant

Ferrite line width
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Hy, Ha, Hpy:

M, Hg, lg:

Hir, Hop, H3R:
p:

d3

List of Symbols (Continued)

. g
Dielectric loss tangeut = 7
Permittivity of free space

Permittivity of various dielectric regions; dielectric
constants

€1 £3
Relative permittivity = &5 ... &

Real part of the dielectric constant
Imaginary part of the dielectric constant
Impedance of free space ¥ 120T
Permeability of free space
Tensor permeability

. -
Entries of Uy

Permeability of various dielectric regiomns

vi M3
Relative permeabilities =75 ... g

=

Radial variable
Dielectric Conductivity
Azimuthal vériable

- BO

Non-relativistic cyclotron frequency =
mo_

Wave radian frequency

Waveguide cutoff frequency
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